Although kinematic analysis of conventional mechanisms is a well-documented fundamental issue in mechanisms and robotics, the emerging reconfigurable mechanisms and robots pose new challenges in kinematics. One of the challenges is the reconfiguration analysis of multimode mechanisms, which refers to finding all the motion modes and the transition configurations of the multimode mechanisms. Recent advances in mathematics, especially algebraic geometry and numerical algebraic geometry, make it possible to develop an efficient method for the reconfiguration analysis of reconfigurable mechanisms and robots. This paper first presents a method for formulating a set of kinematic loop equations for mechanisms using dual quaternions. Using this approach, a set of kinematic loop equations of spatial mechanisms is composed of six polynomial equations. Then the reconfiguration analysis of a novel multimode single-degree-of-freedom (1DOF) 7R spatial mechanism is dealt with by solving the set of loop equations using tools from algebraic geometry. It is found that the 7R multimode mechanism has three motion modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. Three (or one) R (revolute) joints of the 7R multimode mechanism lose their DOF in its 4R (or 6R) motion modes. Unlike the 7R multimode mechanisms in the literature, the 7R multimode mechanism presented in this paper does not have a 7R mode in which all the seven R joints can move simultaneously.

References

References
1.
Uicker
,
J. J.
,
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1964
, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
309
314
.
2.
Yang
,
A. T.
,
1969
, “
Displacement Analysis of Spatial Five-Link Mechanisms Using (3×3) Matrices With Dual-Number Elements
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
152
157
.
3.
Lee
,
H. Y.
, and
Liang
,
C. G.
,
1988
, “
Displacement Analysis of the General Spatial 7-Link 7R Mechanism
,”
Mech. Mach. Theory
,
23
(
3
), pp.
219
226
.
4.
Raghavan
,
M.
, and
Roth
,
B.
,
1993
, “
Inverse Kinematics of the General 6R Manipulator and Related Linkages
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
502
508
.
5.
Wang
,
Y.
,
Hang
,
L.
, and
Yang
,
T.
,
2006
, “
Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base
,”
Front. Mech. Eng. China
,
1
(1), pp. 115–124.
6.
Husty
,
M. L.
,
Pfurner
,
M.
, and
Schröcker
,
H.-P.
,
2007
, “
A New and Efficient Algorithm for the Inverse Kinematics of a General Serial 6R Manipulator
,”
Mech. Mach. Theory
,
42
(
1
), pp.
66
81
.
7.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
8.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
9.
Gervasi
,
P.
,
Karakusevic
,
V.
, and
Zsombor-Murray
,
P. J.
,
1998
, “
An Algorithm for Solving the Inverse Kinematics of a 6R Serial Manipulator Using Dual Quaternions and Grassmannians
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarčič
and
M. L.
Husty
, eds.,
Springer
, Dordrecht, The Netherlands, pp.
383
392
.
10.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
and
V.
Parenti-Castelli
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
359
368
.
11.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
12.
Fanghella
,
P.
,
Galletti
,
C.
, and
Gianotti
,
E.
,
2006
, “
Parallel Robots That Change Their Group of Motion
,”
Advances in Robot Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
49
56
.
13.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2005
, “
Discontinuously Movable Seven-Link Mechanisms Via Group-Algebraic Approach
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
6
), pp.
577
587
.
14.
Kong
,
X.
, and
Huang
,
C.
,
2009
, “
Type Synthesis of Single-DOF Single-Loop Mechanisms With Two Operation Modes
,”
Reconfigurable Mechanisms and Robots
,
KC Edizioni
, Genova, Italy, pp.
141
146
.
15.
Huang
,
C.
,
Kong
,
X.
, and
Ou
,
T.
,
2009
, “
Position Analysis of a Bennett-Based Multiple-Mode 7R Linkage
,”
ASME
Paper No. DETC2009-87241.
16.
Wohlhart
,
K.
,
2010
, “
Multifunctional 7R Linkages
,”
International Symposium on Mechanisms and Machine Theory
, AzCIFToMM, Izmir, Turkey, Oct. 5–8, pp.
85
91
.
17.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
18.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
07
), pp.
1171
1188
.
19.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
20.
Zhang
,
K. T.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
21.
Zhang
,
K.
,
Müller
,
A.
, and
Dai
,
J. S.
,
2015
, “
A Novel Reconfigurable 7R Linkage With Multifurcation
,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer
, Cham, Switzerland, pp.
15
25
.
22.
He
,
X.
,
Kong
,
X.
,
Hao
,
G.
, and
Ritchie
,
J. M.
,
2015
, “
Design and Analysis of a New 7R Single-Loop Mechanism With 4R, 6R and 7R Operation Modes
,”
Advances Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer
,
Cham, Switzerland
, pp.
27
37
.
23.
Lopez-Custodio
,
P. C.
,
Rico
,
J. M.
,
Cervantes-Snchez
,
J. J.
, and
Prez-Soto
,
G. I.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021029
.
24.
Müller
,
A.
, and
Piipponen
,
S.
,
2015
, “
On Regular Kinematotropies
,”
14th World Congress in Mechanism and Machine Science
, Taipei, Taiwan, Oct. 25–30, Paper No. IMD-123.https://www.researchgate.net/publication/283149233_On_Regular_Kinematotropies
25.
Cox
,
D. A.
,
Little
,
J. B.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties, and Algorithms
,
Springer
,
New York
.
26.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2009
, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Manipulator
,”
Contemporary Mathematics
, Vol.
496
,
American Mathematical Society
,
Providence, RI
, pp.
331
346
.
27.
Husty
,
M. L.
, and
Schröcker
,
H.-P.
,
2013
, “
Kinematics and Algebraic Geometry
,”
21st Century Kinematics
,
J. M.
McCarthy
, ed.,
Springer
, London, pp.
85
123
.
28.
Wampler
,
C. W.
, and
Sommese
,
A. J.
,
2013
, “
Applying Numerical Algebraic Geometry to Kinematics
,”
21st Century Kinematics
,
J. M.
McCarthy
, ed.,
Springer
,
London
, pp.
125
159
.
29.
Decker
,
W.
, and
Pfister
,
G.
,
2013
,
A First Course in Computational Algebraic Geometry
,
Cambridge University Press
,
Cambridge, UK
.
30.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
31.
Kong
,
X.
,
Yu
,
J.
, and
Li
,
D.
,
2015
, “
Reconfiguration Analysis of a Two Degrees-of-Freedom 3-4R Parallel Manipulator With Planar Base and Platform
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011019
.
32.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
, pp.
173
183
.
33.
Nurahmi
,
L.
,
Schadlbauer
,
J.
,
Caro
,
S.
,
Husty
,
M.
, and
Wenger
,
Ph.
,
2015
, “
Kinematic Analysis of the 3-RPS Cube Parallel Manipulator
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011008
.
34.
Kong
,
X.
,
2016
, “
Reconfiguration Analysis of a 4-DOF 3-RER Parallel Manipulator With Equilateral Triangular Base and Moving Platform
,”
Mech. Mach. Theory
,
98
, pp.
180
189
.
35.
Kong
,
X.
,
2016
, “
Reconfiguration Analysis of a Variable Degrees-of-Freedom Parallel Manipulator With Both 3-DOF Planar and 4-DOF 3T1R Operation Modes
,”
ASME
Paper No. DETC2016-59203.
36.
Coste
,
M.
, and
Demdah
,
K. M.
,
2015
, “
Extra Modes of Operation and Self Motions in Manipulators Designed for Schoenflies Motion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041020
.
37.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
(Pt. 2), pp.
269
289
.
38.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2013
, “
Kinematical Analysis of Wunderlich Mechanism
,”
Mech. Mach. Theory
,
70
, pp.
16
31
.
39.
Radavelli
,
L.
,
Simoni
,
R.
,
De Pieri
,
E.
, and
Martins
,
D.
,
2012
, “
A Comparative Study of the Kinematics of Robots Manipulators by Denavit–Hartenberg and Dual Quaternion
,”
Mec. Comput.
,
31
, pp.
2833
2848
.http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/4224/4150
40.
Gan
,
D.
,
Liao
,
Q.
,
Wei
,
S.
,
Dai
,
J. S.
, and
Qiao
,
S.
,
2008
, “
Dual Quaternion-Based Inverse Kinematics of the General Spatial 7R Mechanism
,”
Proc. Inst. Mech. Eng., Part C
,
222
(8), pp.
1593
1598
.
41.
Qiao
,
S.
,
Liao
,
Q.
,
Wei
,
S.
, and
Su
,
H. J.
,
2009
, “
Inverse Kinematic Analysis of the General 6R Serial Manipulators Based on Double Quaternions
,”
Mech. Mach. Theory
,
45
(2), pp.
193
199
.
42.
Li
,
Z.
, and
Schicho
,
J.
,
2015
, “
A Technique for Deriving Equational Conditions on the Denavit–Hartenberg Parameters of 6R Linkages That Are Necessary for Movability
,”
Mech. Mach. Theory
,
94
, pp.
1
8
.
43.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.
44.
Ge
,
Q. J.
,
Varshney
,
A.
,
Menon
,
J.
, and
Chang
,
C.
,
2004
, “
On the Use of Quaternions, Dual Quaternions, and Double Quaternions for Freeform Motion Synthesis
,”
Mach. Des. Res.
,
20
(Z1), pp.
147
150
.http://d.wanfangdata.com.cn/periodical/jxsjyyj2004z1044
45.
Thomas
,
F.
,
2014
, “
Approaching Dual Quaternions From Matrix Algebra
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1037
1048
.
46.
Kong
,
X.
,
2016
, “
Kinematic Analysis of Conventional and Multi-Mode Spatial Mechanisms Using Dual Quaternions
,”
ASME
Paper No. DETC2016-59194.
You do not currently have access to this content.