In this paper, the design and implementation of a novel leg–wheel robot called Transleg are presented. Transleg adopts the wire as the transmission mechanism to simplify the structure and reduce the weight. To the best knowledge of the authors, the wire-driven method has never been used in the leg–wheel robots, so it makes Transleg distinguished from the existing leg–wheel robots. Transleg possesses four transformable leg–wheel mechanisms, each of which has two active degrees-of-freedom (DOFs) in the legged mode and one in the wheeled mode. Two actuators driving each leg–wheel mechanism are mounted on the body, so the weight of the leg–wheel mechanism is reduced as far as possible, which contributes to improving the stability of the legged locomotion. Inspired by the quadruped mammals, a compliant spine mechanism is designed for Transleg. The spine mechanism is also actuated by two actuators to bend in the yaw and pitch directions. It will be beneficial to the turning motion in the legged and wheeled modes and the bounding gait in the legged mode. The design and kinematic analyses of the leg–wheel and spine mechanisms are presented in detail. To verify the feasibility of Transleg, a prototype is implemented. The experiments on the motions in the legged and wheeled modes, the switch between the two modes, and the spine motions are conducted. The experimental results demonstrate the validity of Transleg.

References

References
1.
Ajallooeian
,
M.
,
Pouya
,
S.
,
Sproewitz
,
A.
, and
Ijspeert
,
A. J.
,
2013
, “
Central Pattern Generators Augmented With Virtual Model Control for Quadruped Rough Terrain Locomotion
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
3321
3328
.
2.
Wooden
,
D.
,
Malchano
,
M.
,
Blankespoor
,
K.
,
Howard
,
A.
,
Rizzi
,
A. A.
, and
Raibert
,
M.
,
2010
, “
Autonomous Navigation for BigDog
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
4736
4741
.
3.
Zucker
,
M.
,
Ratliff
,
N.
,
Stolle
,
M.
,
Chestnutt
,
J.
,
Bagnell
,
J. A.
,
Atkeson
,
C. J.
, and
Kuffner
,
J.
,
2011
, “
Optimization and Learning for Rough Terrain Legged Locomotion
,”
Int. J. Rob. Res.
,
30
(
2
), pp.
175
191
.
4.
Satzinger
,
B. W.
,
Lau
,
C.
,
Byl
,
M.
, and
Byl
,
K.
,
2015
, “
Tractable Locomotion Planning for RoboSimian
,”
Int. J. Rob. Res.
,
34
(
13
), pp.
1541
1558
.
5.
Morin
,
P.
, and
Samson
,
C.
,
2008
,
Springer Handbook of Robotics
,
Springer
,
Berlin
, Chap. E.
6.
Sharf
,
I.
,
2010
,
Brain, Body and Machine
,
Springer
,
Berlin
, pp.
299
310
.
7.
Grand
,
C.
,
Benamar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2004
, “
Stability and Traction Optimization of a Reconfigurable Wheel-Legged Robot
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1041
1058
.
8.
Adachi
,
H.
, and
Koyachi
,
N.
,
2001
, “
Development of a Leg-Wheel Hybrid Mobile Robot and Its Step-Passing Algorithm
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Maui, HI, Oct. 29–Nov. 3, Vol.
2
, pp.
728
733
.
9.
Endo
,
G.
, and
Hirose
,
S.
,
2012
, “
Study on Roller-Walker—Improvement of Locomotive Efficiency of Quadruped Robots by Passive Wheels
,”
Adv. Rob.
,
26
(
8–9
), pp.
969
988
.http://www.tandfonline.com/doi/abs/10.1163/156855312X633066
10.
Thomson
,
T.
,
Sharf
,
I.
, and
Beckman
,
B.
,
2012
, “
Kinematic Control and Posture Optimization of a Redundantly Actuated Quadruped Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
1895
1900
.
11.
Wilcox
,
B. H.
,
2012
, “
ATHLETE: A Limbed Vehicle for Solar System Exploration
,”
IEEE Aerospace Conference
(
AERO
), Big Sky, MT, Mar. 3–10, pp.
1
9
.
12.
Tanaka
,
T.
, and
Hirose
,
S.
,
2008
, “
Development of Leg-Wheel Hybrid Quadruped ‘AirHopper’ Design of Powerful Light-Weight Leg With Wheel
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
3890
3895
.
13.
Huang
,
B.
,
Wang
,
P.
, and
Sun
,
L.
,
2006
, “
Behavior-Based Control of a Hybrid Quadruped Robot
,”
Sixth World Congress on Intelligent Control and Automation
(
WCICA
), Dalian, China, June 21–23, Vol.
2
, pp.
8997
9001
.
14.
Luo
,
Y.
,
Li
,
Q.
, and
Liu
,
Z.
,
2014
, “
Design and Optimization of Wheel-Legged Robot: Rolling-Wolf
,”
Chin. J. Mech. Eng.
,
27
(
6
), pp.
1133
1142
.
15.
Nakajima
,
S.
,
2011
, “
RT-Mover: A Rough Terrain Mobile Robot With a Simple leg–Wheel Hybrid Mechanism
,”
Int. J. Rob. Res.
,
30
(
13
), pp.
1609
1626
.
16.
Yuan
,
J.
, and
Hirose
,
S.
,
2004
, “
Research on Leg-Wheel Hybrid Stair-Climbing Robot, Zero Carrier
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Shenyang, China, Aug. 22–26, pp.
654
659
.
17.
Szrek
,
J.
, and
Wójtowicz
,
P.
,
2010
, “
Idea of Wheel-Legged Robot and Its Control System Design
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
58
(
1
), pp.
43
50
.
18.
Xu
,
K.
, and
Ding
,
X.
,
2013
, “
Typical Gait Analysis of a Six-Legged Robot in the Context of Metamorphic Mechanism Theory
,”
Chin. J. Mech. Eng.
,
26
(
4
), pp.
771
783
.
19.
Ding
,
X.
,
Li
,
K.
, and
Xu
,
K.
,
2012
, “
Dynamics and Wheel’s Slip Ratio of a Wheel-Legged Robot in Wheeled Motion Considering the Change of Height
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
1060
1067
.
20.
Guo
,
L.
,
Chen
,
K.
,
Zhao
,
D.
,
Wu
,
D.
,
Liu
,
Z.
, and
Bing
,
Y.
,
2009
, “
Study on a Wheel-Legged Hybrid Mobile Robot
,”
Manuf. Autom.
,
31
(
10
), pp.
1
6
(in Chinese).
21.
Lu
,
D.
,
Dong
,
E.
,
Liu
,
C.
,
Xu
,
M.
, and
Yang
,
J.
,
2016
, “
Generation and Analyses of the Reinforced Wave Gait for a Mammal-Like Quadruped Robot
,”
J. Intell. Rob. Syst.
,
82
(
1
), pp.
51
68
.
22.
Zhang
,
L.
,
Yang
,
Y.
,
Gu
,
Y.
,
Sun
,
X.
,
Yao
,
X.
, and
Shuai
,
L.
,
2016
, “
A New Compact Stair-Cleaning Robot
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
045001
.
23.
Lacagnina
,
M.
,
Muscato
,
G.
, and
Sinatra
,
R.
,
2003
, “
Kinematics, Dynamics and Control of a Hybrid Robot Wheeleg
,”
Rob. Auton. Syst.
,
45
(
3
), pp.
161
180
.
24.
Ottaviano
,
E.
, and
Rea
,
P.
,
2013
, “
Design and Operation of a 2-DOF Leg–Wheel Hybrid Robot
,”
Robotica
,
31
(
8
), pp.
1319
1325
.
25.
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2016
, “
Functional Redesign of Mantis 2.0, a Hybrid Leg-Wheel Robot for Surveillance and Inspection
,”
J. Intell. Rob. Syst.
,
81
(
2
), pp.
215
230
.
26.
Boxerbaum
,
A. S.
,
Klein
,
M. A.
,
Bachmann
,
R.
,
Quinn
,
R. D.
,
Harkins
,
R.
, and
Vaidyanathan
,
R.
,
2009
, “
Design of a Semi-Autonomous Hybrid Mobility Surf-Zone Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Singapore, July 14–17, pp.
974
979
.
27.
Hong
,
D.
,
Jeans
,
J. B.
, and
Ren
,
P.
,
2009
, “
Experimental Verification of the Walking and Turning Gaits for a Two-Actuated Spoke Wheel Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
402
403
.
28.
Herbert
,
S. D.
,
Drenner
,
A.
, and
Papanikolopoulos
,
N.
,
2008
, “
Loper: A Quadruped-Hybrid Stair Climbing Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
799
804
.
29.
Eich
,
M.
,
Grimminger
,
F.
,
Bosse
,
S.
,
Spenneberg
,
D.
, and
Kirchner
,
F.
,
2008
, “
Asguard: A Hybrid-Wheel Security and SAR-Robot Using Bio-Inspired Locomotion for Rough Terrain
,”
International Workshop on Robotics for Risky Interventions and Surveillance of Environment
, Benicàssim, Spain, Jan. 7–8, pp. 774–779.
30.
Kim
,
Y. S.
,
Jung
,
G. P.
,
Kim
,
H.
,
Cho
,
K. J.
, and
Chu
,
C. N.
,
2014
, “
Wheel Transformer: A Wheel-Leg Hybrid Robot With Passive Transformable Wheels
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1487
1498
.
31.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Liu
,
P. C.
,
2014
, “
Quattroped: A Leg–Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
730
742
.
32.
Chen
,
W. H.
,
Lin
,
H. S.
, and
Lin
,
P. C.
,
2014
, “
TurboQuad: A Leg-Wheel Transformable Robot Using Bio-Inspired Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, p.
2090
.
33.
Rohmer
,
E.
,
Reina
,
G.
,
Ishigami
,
G.
,
Nagatani
,
K.
, and
Yoshida
,
K.
,
2008
, “
Action Planner of Hybrid Leg-Wheel Robots for Lunar and Planetary Exploration
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
3902
3907
.
34.
Okada
,
T.
,
Mahmoud
,
A.
,
Botelho
,
W. T.
, and
Shimizu
,
T.
,
2012
, “
Trajectory Estimation of a Skid-Steering Mobile Robot Propelled by Independently Driven Wheels
,”
Robotica
,
30
(
1
), pp.
123
132
.
35.
Tadakuma
,
K.
,
Tadakuma
,
R.
,
Maruyama
,
A.
,
Rohmer
,
E.
,
Nagatani
,
K.
,
Yoshida
,
K.
,
Ming
,
A.
,
Shimojo
,
M.
,
Higashimori
,
M.
, and
Kaneko
,
M.
,
2010
, “
Mechanical Design of the Wheel-Leg Hybrid Mobile Robot to Realize a Large Wheel Diameter
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
3358
3365
.
36.
She
,
Y.
,
Hurd
,
C. J.
, and
Su
,
H. J.
,
2015
, “
A Transformable Wheel Robot With a Passive Leg
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
4165
4170
.
37.
Bryson
,
J. T.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2016
, “
Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041003
.
38.
Spröwitz
,
A. T.
,
Ajallooeian
,
M.
,
Tuleu
,
A.
, and
Ijspeert
,
A. J.
,
2014
, “
Kinematic Primitives for Walking and Trotting Gaits of a Quadruped Robot With Compliant Legs
,”
Front. Comput. Neurosci.
,
8
, p.
27
.
39.
Tsusaka
,
Y.
, and
Ota
,
Y.
,
2006
, “
Wire-Driven Bipedal Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Beijing, China, Oct. 9–15, pp.
3958
3963
.
40.
Zhong
,
Y.
,
Li
,
Z.
, and
Du
,
R.
,
2013
, “
The Design and Prototyping of a Wire-Driven Robot Fish With Pectoral Fins
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Shenzhen, China, Dec. 12–14, pp.
1918
1923
.
41.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
42.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
299
307
.
43.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
44.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
45.
Kato
,
T.
,
Okumura
,
I.
,
Song
,
S. E.
,
Golby
,
A. J.
, and
Hata
,
N.
,
2015
, “
Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2252
2263
.
46.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
, and
Chen
,
M. Z.
,
2016
, “
3D Printing of Variable Stiffness Hyper-Redundant Robotic Arm
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
3871
3877
.
47.
Hyun
,
D. J.
,
Seok
,
S.
,
Lee
,
J.
, and
Kim
,
S.
,
2014
, “
High Speed Trot-Running: Implementation of a Hierarchical Controller Using Proprioceptive Impedance Control on the MIT Cheetah
,”
Int. J. Rob. Res.
,
33
(
11
), pp.
1417
1445
.
48.
Weinmeister
,
K.
,
Eckert
,
P.
,
Witte
,
H.
, and
Ijspeert
,
A. J.
,
2015
, “
Cheetah-Cub-S: Steering of a Quadruped Robot Using Trunk Motion
,”
IEEE International Symposium on Safety, Security, and Rescue Robotics
(
SSRR
), West Lafayette, IN, Oct. 18–20, pp.
1
6
.
49.
Khoramshahi
,
M.
,
Sprowitz
,
A.
,
Tuleu
,
A.
,
Ahmadabadi
,
M. N.
, and
Ijspeert
,
A. J.
,
2013
, “
Benefits of an Active Spine Supported Bounding Locomotion With a Small Compliant Quadruped Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp. 3329–3334.
50.
Eckert
,
P.
,
Spröwitz
,
A.
,
Witte
,
H.
, and
Ijspeert
,
A. J.
,
2015
, “
Comparing the Effect of Different Spine and Leg Designs for a Small Bounding Quadruped Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
3128
3133
.
51.
Zhao
,
Q.
,
Nakajima
,
K.
,
Sumioka
,
H.
,
Hauser
,
H.
, and
Pfeifer
,
R.
,
2013
, “
Spine Dynamics as a Computational Resource in Spine-Driven Quadruped Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–7, pp.
1445
1451
.
52.
Zhang
,
X. L.
,
Duan
,
G. H.
,
Zheng
,
H. J.
,
Zhao
,
L. Y.
, and
Cheng
,
Z. F.
,
2003
, “
Bionic Design of the Quadrupedal Robot and Motion Simulation
,”
IEEE International Conference on Robotics, Intelligent Systems and Signal Processing
(
RISSP
), Changsha, China, Oct. 8–13, pp.
137
141
.
You do not currently have access to this content.