Rigid origami is seen as a fundamental model in many self-folding machines. A key issue in designing origami is the rigid/nonrigid foldability. The kinematic and foldability of Kresling origami, which is based on an origami pattern of the vertex with six creases, are studied in this paper. The movement of the single-vertex is first discussed. Based on the quaternion method, the loop-closure equation of the vertex with six creases is obtained. Then, the multitransformable behavior of the single vertex is investigated. Furthermore, the rigid foldability of origami patterns with multivertex is investigated with an improved dual quaternion method, which is based on studying the folding angle and the coordinates of all vertices. It can be found that the Kresling cylinder is not rigidly foldable.

References

1.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
2.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
3.
Yasuda
,
H.
,
Chen
,
Z.
, and
Yang
,
J.
,
2016
, “
Multitransformable Leaf-Out Origami With Bistable Behavior
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031013
.
4.
Lee
,
T. U.
, and
Gattas
,
J. M.
,
2016
, “
Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031009
.
5.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.
6.
Cai
,
J. G.
,
Xu
,
Y. X.
, and
Feng
,
J.
,
2013
, “
Geometric Analysis of a Foldable Barrel Vault With Origami
,”
ASME J. Mech. Des.
,
135
(
11
), p. 114501.
7.
Miura
,
K.
,
1980
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
31st Congress of International Astronautics Federation (IAF-80-A31)
, Tokyo, Japan, Sept. 21–28, pp.
1
10
.
8.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2005
,
A Survey of Folding and Unfolding in Computational Geometry
, Vol.
52
,
Mathematical Sciences Research Institute Publications
,
Berkeley, CA
, pp.
167
211
.
9.
Demaine
,
E. D.
, and
Demaine
,
M. L.
,
1997
, “
Computing Extreme Origami Bases
,” Technical, School of Computer Science, University of Waterloo, Waterloo, ON, Canada, Report No.
CS-97-22
.
10.
Streinu
,
I.
, and
Whiteley
,
W.
,
2005
, “
Single-Vertex Origami and Spherical Expansive Motions
,”
Lecture Notes in Computer Science
, Vol.
3742
,
Springer
,
Berlin
, pp.
161
173
.
11.
Watanabe
,
N.
, and
Kawaguchi
,
K.
,
2006
, “
The Method for Judging Rigid Foldability
,”
Origami 4th International Conference on Origami in Science, Mathematics, and Education
, Pasadena, CA, Sept. 8–10, pp.
165
174
.
12.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
13.
Wei
,
G. W.
, and
Dai
,
J. S.
,
2013
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
14.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
15.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
16.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
466
(
2119
), pp.
2155
2174
.
17.
Yoshimura
,
Y.
,
1951
, “
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression and Bending
,” Reports of the Institute of Science and Technology, University of Tokyo, Tokyo, Japan (English Translation: Technical Memorandum 1390 of the National Advisory Committee for Aeronautics, Washington DC, 1955).
18.
Hunt
,
G. W.
,
Lord
,
G. J.
, and
Peletier
,
M. A.
,
2003
, “
Cylindrical Shell Buckling: A Characterization of Localization and Periodicity
,”
Discrete Continuous Dyn. Syst. B
,
3
(
4
), pp.
505
518
.
19.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders—Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
20.
Kresling
,
B.
,
1996
, “
Plant ‘Design’: Mechanical Simulations of Growth Patterns and Bionics
,”
Biomimetics
,
3
(
3
), pp.
105
222
.
21.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth's Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-ori
,”
6th International Conference on Computation of Shell and Spatial Structures
,
J. F.
Abel
and
J.
Robert Cooke
, eds., IASS-IACM, Spanning Nano to Mega, Ithaca, NY, May 28–31, pp. 1–4.
22.
Cai
,
J.
,
Deng
,
X.
,
Zhang
,
Y.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2016
, “
Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031004
.
23.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
International Association for Shell and Spatial Structures Symposium
(
IASS
), Madrid, Spain, Sept. 28–Oct. 2, pp.
2287
2294
.
24.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry 2010
,
Springer
,
Vienna, Austria
, pp.
87
102
.
25.
Yasuda
,
H.
,
Yein
,
T.
,
Tachi
,
T.
,
Miura
,
K.
, and
Taya
,
M.
,
2013
, “
Folding Behaviour of Tachi-Miura Polyhedron Bellows
,”
Proc. R. Soc. A
,
469
(
2159
), p.
20130351
.
26.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinder by Origami
,”
JSME Int. J. Ser. C
,
45
(
1
), pp.
364
370
.
27.
Nojima
,
T.
,
2007
, “
Origami Modeling of Functional Structures Based on Organic Patterns
,”
VIPSI Conference
, Tokyo, Japan, May 31–June 6, pp. 1–21.
28.
Liu
,
S. C.
,
Lv
,
W. L.
,
Chen
,
Y.
, and
Lu
,
G. X.
,
2016
, “
Deployable Prismatic Structures With Rigid Origami Patterns
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031002
.
29.
Cai
,
J. G.
,
Zhang
,
Y. T.
,
Xu
,
Y. X.
,
Zhou
,
Y.
, and
Feng
,
J.
,
2016
, “
The Foldability of Cylindrical Foldable Structures Based on Rigid Origami
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031401
.
30.
Kuipers
,
J. B.
,
2002
, “
Quaternions and Rotation Sequences: A Primer With Applications to Orbits
,”
Aerospace and Virtual Reality
,
Princeton University Press
, Princeton, NJ.
31.
Dai
,
J. S.
,
2015
, “
Euler-Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
.
32.
Cai
,
J. G.
,
Ma
,
R. J.
,
Feng
,
J.
,
Zhou
,
Y.
, and
Deng
,
X. W.
,
2016
, “
Foldability Analysis of Cylindrical Origami Structures
,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
, Berlin, pp.
143
153
.
33.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021005
.
34.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
35.
Zhou
,
W.
,
Chen
,
Y.
,
Peng
,
B.
,
Yang
,
H.
,
Yu
,
H.
,
Liu
,
H.
, and
He
,
X.
,
2014
, “
Air Damping Analysis in Comb Microaccelerometer
,”
Adv. Mech. Eng.
,
6
, p.
373172
.
36.
Zhou
,
W.
,
Chen
,
L.
,
Yu
,
H.
,
Peng
,
B.
, and
Chen
,
Y.
,
2016
, “
Sensitivity Jump of Micro Accelerometer Induced by Micro-Fabrication Defects of Micro Folded Beams
,”
Meas. Sci. Rev.
,
16
(
4
), pp.
228
234
.
You do not currently have access to this content.