Hyper-redundant snakelike serial robots are of great interest due to their application in search and rescue during disaster relief in highly cluttered environments and recently in the field of medical robotics. A key feature of these robots is the presence of a large number of redundant actuated joints and the associated well-known challenge of motion planning. This problem is even more acute in the presence of obstacles. Obstacle avoidance for point bodies, nonredundant serial robots with a few links and joints, and wheeled mobile robots has been extensively studied, and several mature implementations are available. However, obstacle avoidance for hyper-redundant snakelike robots and other extended articulated bodies is less studied and is still evolving. This paper presents a novel optimization algorithm, derived using calculus of variation, for the motion planning of a hyper-redundant robot where the motion of one end (head) is an arbitrary desired path. The algorithm computes the motion of all the joints in the hyper-redundant robot in a way such that all its links avoid all obstacles present in the environment. The algorithm is purely geometric in nature, and it is shown that the motion in free space and in the vicinity of obstacles appears to be more natural. The paper presents the general theoretical development and numerical simulations results. It also presents validating results from experiments with a 12-degree-of-freedom (DOF) planar hyper-redundant robot moving in a known obstacle field.

References

References
1.
Miller
,
G. S.
,
2002
, “
13 Snake Robots for Search and Rescue
,”
Neurotechnology for Biomimetic Robots
, MIT Press, Cambridge, MA, p.
271
.
2.
Sreenivasan
,
S.
,
Goel
,
P.
, and
Ghosal
,
A.
,
2010
, “
A Real-Time Algorithm for Simulation of Flexible Objects and Hyper-Redundant Manipulators
,”
Mech. Mach. Theory
,
45
(
3
), pp.
454
466
.
3.
Menon
,
M. S.
,
Ananthasuresh
,
G. K.
, and
Ghosal
,
A.
,
2013
, “
Natural Motion of One-Dimensional Flexible Objects Using Minimization Approaches
,”
Mech. Mach. Theory
,
67
, pp.
64
76
.
4.
Hwang
,
Y. K.
, and
Ahuja
,
N.
,
1992
, “
Gross Motion Planning—A Survey
,”
ACM Comput. Surv.
,
24
(
3
), pp.
219
291
.
5.
Brooks
,
R. A.
,
1983
, “
Planning Collision-Free Motions for Pick-and-Place Operations
,”
Int. J. Rob. Res.
,
2
(
4
), pp.
19
44
.
6.
Lozano-Perez
,
T.
,
1981
, “
Automatic Planning of Manipulator Transfer Movements
,”
IEEE Trans. Syst., Man Cybern.
,
11
(
10
), pp.
681
698
.
7.
Fox
,
D.
,
Burgard
,
W.
, and
Thrun
,
S.
,
1997
, “
The Dynamic Window Approach to Collision Avoidance
,”
IEEE Rob. Autom. Mag.
,
4
(
1
), pp.
23
33
.
8.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.
9.
Barraquand
,
J.
,
Langlois
,
B.
, and
Latombe
,
J.-C.
,
1992
, “
Numerical Potential Field Techniques for Robot Path Planning
,”
IEEE Trans. Syst., Man Cybern.
,
22
(
2
), pp.
224
241
.
10.
Rimon
,
E.
, and
Koditschek
,
D. E.
,
1992
, “
Exact Robot Navigation Using Artificial Potential Functions
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
501
518
.
11.
Ó'Dúnlaing
,
C. P.
,
Sharir
,
M.
, and
Yap
,
C. K.
,
1983
, “
Retraction: A New Approach to Motion-Planning
,” 15th Annual
ACM
Symposium on Theory of Computing
, Boston, MA, Apr. 25–27, pp.
207
220
.
12.
Glasius
,
R.
,
Komoda
,
A.
, and
Gielen
,
S. C. A. M.
,
1995
, “
Neural Network Dynamics for Path Planning and Obstacle Avoidance
,”
Neural Networks
,
8
(
1
), pp.
125
133
.
13.
Boyse
,
J. W.
,
1979
, “
Interference Detection Among Solids and Surfaces
,”
Commun. ACM
,
22
(
1
), pp.
3
9
.
14.
Prescott
,
T. J.
, and
Mayhew
,
J. E.
,
1991
, “
Obstacle Avoidance Through Reinforcement Learning
,”
Neural Information Processing Systems
(
NIPS
), Denver, CO, Dec. 2–5, pp.
523
530
.
15.
Suh
,
S.-H.
, and
Shin
,
K. G.
,
1988
, “
A Variational Dynamic Programming Approach to Robot-Path Planning With a Distance-Safety Criterion
,”
IEEE Trans. Rob. Autom.
,
4
(
3
), pp.
334
349
.
16.
Gilbert
,
E. G.
, and
Johnson
,
D. W.
,
1985
, “
Distance Functions and Their Application to Robot Path Planning in the Presence of Obstacles
,”
IEEE Trans. Rob. Autom.
,
1
(
1
), pp.
21
30
.
17.
Luh
,
J. Y. S.
, and
Lin
,
C. S.
,
1981
, “
Optimum Path Planning for Mechanical Manipulators
,”
ASME J. Dyn. Syst., Meas. Control
,
103
(
2
), pp.
142
151
.
18.
Sundar
,
S.
, and
Shiller
,
Z.
,
1997
, “
Optimal Obstacle Avoidance Based on the Hamilton–Jacobi–Bellman Equation
,”
IEEE Trans. Rob. Autom.
,
13
(
2
), pp.
305
310
.
19.
Seshadri
,
C.
, and
Ghosh
,
A.
,
1993
, “
Optimum Path Planning for Robot Manipulators Amid Static and Dynamic Obstacles
,”
IEEE Trans. Syst., Man Cybern.
,
23
(
2
), pp.
576
584
.
20.
Hanafusa
,
H.
,
Yoshikawa
,
T.
, and
Nakamura
,
Y.
,
1981
, “
Analysis and Control of Articulated Robot With Redundancy
,”
8th Trennial World Congress of IFAC, Kyoto, Japan
, Vol. 4, pp.
1927
1932
.
21.
Maciejewski
,
A. A.
, and
Klein
,
C. A.
,
1985
, “
Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments
,”
Int. J. Rob. Res.
,
4
(
3
), pp.
109
117
.
22.
Lozano-Perez
,
T.
,
1983
, “
Spatial Planning: A Configuration Space Approach
,”
IEEE Trans. Comput.
,
C-32
(
2
), pp.
108
120
.
23.
Branicky
,
M. S.
, and
Newman
,
W. S.
,
1990
, “
Rapid Computation of Configuration Space Obstacles
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Cincinnati, OH, May 13–18, pp.
304
310
.
24.
Lozano-Perez
,
T.
,
1987
, “
A Simple Motion-Planning Algorithm for General Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
3
(
3
), pp.
224
238
.
25.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1992
, “
A Geometric Approach to Hyper-Redundant Manipulator Obstacle Avoidance
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
580
585
.
26.
Choset
,
H.
, and
Henning
,
W.
,
1999
, “
A Follow-the-Leader Approach to Serpentine Robot Motion Planning
,”
J. Aerosp. Eng.
,
12
(
2
), pp.
65
73
.
27.
Zhang
,
Y.
, and
Wang
,
J.
,
2004
, “
Obstacle Avoidance for Kinematically Redundant Manipulators Using a Dual Neural Network
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
34
(
1
), pp.
752
759
.
28.
Kahn
,
M. E.
, and
Roth
,
B.
,
1971
, “
The Near-Minimum-Time Control of Open-Loop Articulated Kinematic Chains
,”
ASME J. Dyn. Syst., Meas. Control
,
93
(
3
), pp.
164
172
.
29.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
,
Pettersen
,
K. Y.
, and
Liljebäck
,
P.
,
2008
, “
Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
88
104
.
30.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
Ø.
, and
Gravdahl
,
J. T.
,
2014
, “
A 3D Motion Planning Framework for Snake Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
1100
1107
.
31.
Pfotzer
,
L.
,
Staehler
,
M.
,
Hermann
,
A.
,
Roennau
,
A.
, and
Dillmann
,
R.
,
2015
, “
KAIRO 3: Moving Over Stairs & Unknown Obstacles With Reconfigurable Snake-Like Robots
,”
European Conference on Mobile Robots
(
ECMR
), Lincoln, UK, Sept. 2–4, pp.
1
6
.
32.
Vonásek
,
V.
,
Saska
,
M.
,
Winkler
,
L.
, and
Přeučil
,
L.
,
2015
, “
High-Level Motion Planning for CPG-Driven Modular Robots
,”
Rob. Auton. Syst.
,
68
(
1
), pp.
116
128
.
33.
Reznik
,
D.
, and
Lumelsky
,
V.
,
1994
, “
Sensor-Based Motion Planning in Three Dimensions for a Highly Redundant Snake Robot
,”
Adv. Rob.
,
9
(
3
), pp.
255
280
.
34.
Weinstock
,
R.
,
1952
,
Calculus of Variations: With Applications to Physics and Engineering
,
McGraw-Hill
,
New York
.
35.
Smith
,
D.
,
1998
,
Variational Methods in Optimization
,
Dover Publications
,
Mineola, NY
.
36.
Steinhaus
,
H.
,
1969
,
Mathematical Snapshots
,
Oxford University Press
,
New York
.
37.
Spanier
,
E. H.
,
1994
,
Algebraic Topology
, Vol.
55
,
Springer Science & Business Media
,
New York
.
38.
Gardner
,
M.
,
1977
,
Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles From Scientific American
,
Vintage Books
,
New York
.
39.
Barr
,
A. H.
,
1981
, “
Superquadrics and Angle-Preserving Transformations
,”
IEEE Comput. Graphics Appl.
,
1
(
1
), pp.
11
23
.
40.
MATLAB,
2012
, “
MATLAB, Version 7.12.0 (R2011a)
,” The MathWorks, Inc., Natick, MA.
You do not currently have access to this content.