Kinematic control of manipulators with joint physical constraints, such as joint limits and joint velocity limits, has received extensive studies. Many studies resolved this problem at the second-order kinematic level, which may suffer from the self-motion instability in the presence of persistent self-motion or unboundedness of joint velocity. In this paper, a unified approach is proposed to control a manipulator with both joint limits and joint velocity limits at the second-order kinematic level. By combining the weighted least-norm (WLN) solution in the revised joint space and the clamping weighted least-norm (CWLN) solution in the real joint space, the unified approach ensures the joint limits and joint velocity limits at the same time. A time-variant clamping factor is incorporated into the unified approach to suppress the self-motion when the joint velocity diverges, or the end-effector stops, which improves the stability of self-motion. The simulations in contrast to the traditional dynamic feedback control scheme and the new minimum-acceleration-norm (MAN) scheme have been made to demonstrate the advantages of the unified approach.

References

References
1.
Xiang
,
J.
,
Zhong
,
C.
, and
Wei
,
W.
,
2010
, “
General-Weighted Least-Norm Control for Redundant Manipulators
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
660
669
.
2.
Jiang
,
P.
,
Xiang
,
J.
,
Wei
,
W.
, and
Shan
,
C.
,
2015
, “
General-Weighted Least-Norm Control for Redundant Manipulators Under Time-Dependent Constraint
,”
Int. J. Adv. Rob. Syst.
,
12
(5).
3.
Chen
,
P.
,
Xiang
,
J.
, and
Wei
,
W.
,
2016
, “
A Unified Weighted Least Norm Method for Redundant Manipulator Control
,”
Int. J. Adv. Rob. Syst.
,
13
(1).
4.
Huang
,
S.
,
Xiang
,
J.
,
Wei
,
W.
, and
Chen
,
M. Z. Q.
,
2017
, “
On the Virtual Joints for Kinematic Control of Redundant Manipulators With Multiple Constraints
,”
IEEE Trans. Control Syst. Technol.
, epub.
5.
Liegeois
,
A.
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst., Man, Cybern.
,
7
(
12
), pp.
868
871
.
6.
Siciliano
,
B.
, and
Slotine
,
J.-J. E.
,
1991
, “
A General Framework for Managing Multiple Tasks in Highly Redundant Robotic Systems
,”
Fifth International Conference on Advanced Robotics
(
ICAR
), Pisa, Italy, June 19–22, pp.
1211
1216
.
7.
Mansard
,
N.
, and
Chaumette
,
F.
,
2009
, “
Directional Redundancy for Robot Control
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1179
1192
.
8.
Kanoun
,
O.
,
Lamiraux
,
F.
, and
Wieber
,
P.-B.
,
2011
, “
Kinematic Control of Redundant Manipulators: Generalizing the Task-Priority Framework to Inequality Task
,”
IEEE Trans. Rob.
,
27
(
4
), pp.
785
792
.
9.
Chan
,
T. F.
, and
Dubey
,
R. V.
,
1995
, “
A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
2
), pp.
286
292
.
10.
Huang
,
S.
,
Peng
,
Y.
,
Wei
,
W.
, and
Xiang
,
J.
,
2014
, “
Clamping Weighted Least-Norm Method for the Manipulator Kinematic Control: Avoiding Joint Limits
,”
33rd Chinese Control Conference
(
CCC
), Nanjing, China, July 28–30, pp.
8309
8314
.
11.
Huang
,
S.
,
Peng
,
Y.
,
Wei
,
W.
, and
Xiang
,
J.
,
2016
, “
Clamping Weighted Least-Norm Method for the Manipulator Kinematic Control With Constraints
,”
Int. J. Control
,
89
(11), pp. 2240–2249.
12.
Nakanishi
,
J.
,
Cory
,
R.
,
Mistry
,
M.
,
Peters
,
J.
, and
Schaal
,
S.
,
2008
, “
Operational Space Control: A Theoretical and Empirical Comparison
,”
Int. J. Rob. Res.
,
27
(
6
), pp.
737
757
.
13.
Luh
,
J. Y.
,
Walker
,
M. W.
, and
Paul
,
R. P.
,
1980
, “
Resolved-Acceleration Control of Mechanical Manipulators
,”
IEEE Trans. Autom. Control
,
25
(
3
), pp.
468
474
.
14.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer-Verlag
,
New York
.
15.
Flacco
,
F.
, and
Luca
,
A. D.
,
2014
, “
Discrete-Time Velocity Control of Redundant Robots With Acceleration/Torque Optimization Properties
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
5139
5144
.
16.
Kircanski
,
M.
, and
Kirćanski
,
N.
,
1997
, “
Resolved-Rate and Resolved-Acceleration-Based Robot Control in the Presence of Actuators' Constraints
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Albuquerque, NM, Apr. 20–25, Vol.
1
, pp.
235
240
.
17.
Chiaverini
,
S.
, and
Fusco
,
G.
,
1999
, “
A New Inverse Kinematics Algorithm With Path Tracking Capability Under Velocity and Acceleration Constraints
,”
38th IEEE Conference on Decision and Control
(
CDC
), Phoenix, AZ, Dec. 7–10, pp.
2064
2069
.
18.
Antonelli
,
G.
,
Chiaverini
,
S.
, and
Fusco
,
G.
,
2003
, “
A New On-Line Algorithm for Inverse Kinematics of Robot Manipulators Ensuring Path Tracking Capability Under Joint Limits
,”
IEEE Trans. Rob. Autom.
,
19
(
1
), pp.
162
167
.
19.
Lo Bianco
,
C. G.
, and
Gerelli
,
O.
,
2011
, “
Online Trajectory Scaling for Manipulators Subject to High-Order Kinematic and Dynamic Constraints
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1144
1152
.
20.
Guo
,
D.
, and
Zhang
,
Y.
,
2014
, “
Acceleration-Level Inequality-Based Man Scheme for Obstacle Avoidance of Redundant Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
6903
6914
.
21.
Hollerbach
,
J. M.
, and
Suh
,
K. C.
,
1987
, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
308
316
.
22.
Maciejewski
,
A. A.
,
1991
, “
Kinetic Limitations on the Use of Redundancy in Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
,
7
(
2
), pp.
205
210
.
23.
De Luca
,
A.
, and
Oriolo
,
G.
,
1990
, “
Efficient Dynamic Resolution of Robot Redundancy
,”
American Control Conference
(
ACC
), San Diego, CA, May 23–25, pp.
221
227
.
24.
Kang
,
H.-J.
, and
Freeman
,
R. A.
,
1993
, “
Null Space Damping Method for Local Joint Torque Optimization of Redundant Manipulators
,”
J. Rob. Syst.
,
10
(
2
), pp.
249
270
.
25.
Chen
,
T.-H.
,
Cheng
,
F.-T.
,
Sun
,
Y.-Y.
, and
Hung
,
M.-H.
,
1994
, “
Torque Optimization Schemes for Kinematically Redundant Manipulators
,”
J. Rob. Syst.
,
11
(
4
), pp.
257
269
.
26.
Hsu
,
P.
,
Mauser
,
J.
, and
Sastry
,
S.
,
1989
, “
Dynamic Control of Redundant Manipulators
,”
J. Rob. Syst.
,
6
(
2
), pp.
133
148
.
27.
Zergeroglu
,
E.
,
Dawson
,
D. D.
,
Walker
,
I. W.
, and
Setlur
,
P.
,
2004
, “
Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
9
(
1
), pp.
129
132
.
28.
Qiu
,
B.
,
Guo
,
D.
,
Tan
,
H.
,
Yang
,
Z.
, and
Zhang
,
Y.
,
2014
, “
Different-Level Simultaneous Minimization With Aid of Ma Equivalence for Robotic Redundancy Resolution
,”
Advances in Neural Networks- ISNN 2014
, Springer, Cham, Switzerland, pp.
431
438
.
29.
Liao
,
B.
, and
Liu
,
W.
,
2015
, “
Pseudoinverse-Type Bi-Criteria Minimization Scheme for Redundancy Resolution of Robot Manipulators
,”
Robotica
,
33
(
10
), pp.
2100
2113
.
30.
Qiu
,
B.
,
Zhang
,
Y.
, and
Yang
,
Z.
,
2016
, “
Revisit and Compare Ma Equivalence and Zhang Equivalence of Minimum Velocity Norm (MVN) Type
,”
Adv. Rob.
,
30
(
6
), pp.
416
430
.
31.
Flacco
,
F.
, and
De Luca
,
A.
,
2015
, “
Discrete-Time Redundancy Resolution at the Velocity Level With Acceleration/Torque Optimization Properties
,”
Rob. Auton. Syst.
,
70
, pp.
191
201
.
32.
Ma
,
S.
, and
Nenchev
,
D. N.
,
1996
, “
Local Torque Minimization for Redundant Manipulators: A Correct Formulation
,”
Robotica
,
14
(
2
), pp.
235
239
.
33.
O'Neil
,
K. A.
,
2002
, “
Divergence of Linear Acceleration-Based Redundancy Resolution Schemes
,”
IEEE Trans. Rob. Autom.
,
18
(
4
), pp.
625
631
.
34.
Chiaverini
,
S.
,
Egeland
,
O.
, and
Kanestrom
,
R.
,
1991
, “
Achieving User-Defined Accuracy With Damped Least-Squares Inverse Kinematics
,”
Fifth International Conference on Advanced Robotics
(
ICAR
), Pisa, Italy, June 19–22, pp.
672
677
.
35.
Khalil
,
H. K.
, and
Grizzle
,
J.
,
1996
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
, Upper Saddle River,
NJ
.
36.
Caccavale
,
F.
,
Chiaverini
,
S.
, and
Siciliano
,
B.
,
1997
, “
Second-Order Kinematic Control of Robot Manipulators With Jacobian Damped Least-Squares Inverse: Theory and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
2
(
3
), pp.
188
194
.
You do not currently have access to this content.