Thin foldable origami mechanisms allow reconfiguration of complex structures with large volumetric change, versatility, and at low cost; however, there is rarely a systematic way to make them autonomously actuated due to the lack of low profile actuators. Actuation should satisfy the design requirements of wide actuation range, high actuation speed, and backdrivability. This paper presents a novel approach toward fast and controllable folding mechanisms by embedding an electromagnetic actuation system into a nominally flat platform. The design, fabrication, and modeling of the electromagnetic actuation system are reported, and a 1.7 mm-thick single-degree-of-freedom (DoF) foldable parallel structure reaching an elevation of 13 mm is used as a proof of concept for the proposed methodology. We also report on the extensive test results that validate the mechanical model in terms of the loaded and unloaded speed, the blocked force, and the range of actuation.

References

References
1.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.
2.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
3.
Haldane
,
D. W.
,
Casarez
,
C. S.
,
Karras
,
J. T.
,
Lee
,
J.
,
Li
,
C.
,
Pullin
,
A. O.
,
Schaler
,
E. W.
,
Yun
,
D.
,
Ota
,
H.
,
Javey
,
A.
, and
Fearing
,
R. S.
,
2015
, “
Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021011
.
4.
Koh
,
J. S.
, and
Cho
,
K. J.
,
2013
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
419
429
.
5.
Firouzeh
,
A.
, and
Paik
,
J.
,
2015
, “
Robogami: A Fully Integrated Low-Profile Robotic Origami
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021009
.
6.
Noh
,
M.
,
Kim
,
S. W.
,
An
,
S.
,
Koh
,
J. S.
, and
Cho
,
K. J.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1007
1018
.
7.
Zhakypov
,
Z.
,
Falahi
,
M.
,
Shah
,
M.
, and
Paik
,
J.
,
2015
, “
The Design and Control of the Multi-Modal Locomotion Origami Robot, Tribot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
4349
4355
.
8.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired At-Scale Robotic Insect
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
341
347
.
9.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DOF Origami Grasper With an SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
484
498
.
10.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
11.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
12.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
13.
Baisch
,
A. T.
,
Sreetharan
,
P. S.
, and
Wood
,
R. J.
,
2010
, “
Biologically-Inspired Locomotion of a 2g Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
5360
5365
.
14.
Diller
,
E.
,
Pawashe
,
C.
,
Floyd
,
S.
, and
Sitti
,
M.
,
2011
, “
Assembly and Disassembly of Magnetic Mobile Micro-Robots Towards Deterministic 2-D Reconfigurable Micro-Systems
,”
Int. J. Rob. Res.
,
30
(
14
), pp.
1667
1680
.
15.
Reissman
,
T.
,
Park
,
J. S.
, and
Garcia
,
E.
,
2012
, “
Multilayer, Stacked Spiral Copper Inductors on Silicon With Micro-Henry Inductance Using Single-Level Lithography
,”
Act. Passive Electron. Compon.
,
2012
, p.
871620
.
16.
Sun
,
X.
,
Zheng
,
Y.
,
Li
,
Z.
,
Li
,
X.
, and
Zhang
,
H.
,
2013
, “
Stacked Flexible Parylene-Based 3D Inductors With Ni80Fe20 Core for Wireless Power Transmission System
,”
IEEE 26th International Conference on Micro Electro Mechanical Systems
(
MEMS
), Taipei, Taiwan, Jan. 20–24, pp.
849
852
.
17.
Meyer
,
C. D.
,
Bedair
,
S. S.
,
Morgan
,
B. C.
, and
Arnold
,
D. P.
,
2012
, “
Influence of Layer Thickness on the Performance of Stacked Thick-Film Copper Air-Core Power Inductors
,”
IEEE Trans. Magn.
,
48
(
11
), pp.
4436
4439
.
18.
Futai
,
N.
,
Matsumoto
,
K.
, and
Shimoyama
,
I.
,
2004
, “
A Flexible Micromachined Planar Spiral Inductor for Use as an Artificial Tactile Mechanoreceptor
,”
Sens. Actuators, A
,
111
(
2
), pp.
293
303
.
19.
Takahashi
,
H.
,
Dohi
,
T.
,
Matsumoto
,
K.
, and
Shimoyama
,
I.
,
2007
, “
A Micro Planar Coil for Local High Resolution Magnetic Resonance Imaging
,”
IEEE 20th International Conference on Micro Electro Mechanical Systems
(
MEMS
), Hyogo, Japan, Jan. 21–25, pp.
549
552
.
20.
Kim
,
K. H.
,
Yoon
,
H. J.
,
Jeong
,
O. C.
, and
Yang
,
S. S.
,
2005
, “
Fabrication and Test of a Micro Electromagnetic Actuator
,”
Sens. Actuators, A
,
117
(
1
), pp.
8
16
.
21.
Zárate
,
J. J.
,
Tosolini
,
G.
,
Petroni
,
S.
,
De Vittorio
,
M.
, and
Shea
,
H.
,
2015
, “
Optimization of the Force and Power Consumption of a Microfabricated Magnetic Actuator
,”
Sens. Actuators
, A,
234
, pp.
57
64
.
22.
Cugat
,
O.
,
Basrour
,
S.
,
Divoux
,
C.
,
Mounaix
,
P.
, and
Reyne
,
G.
,
2001
, “
Deformable Magnetic Mirror for Adaptive Optics: Technological Aspects
,”
Sens. Actuators, A
,
89
(
1
), pp.
1
9
.
23.
Benali-Khoudja
,
M.
,
Hafez
,
M.
, and
Kheddar
,
A.
,
2007
, “
VITAL: An Electromagnetic Integrated Tactile Display
,”
Displays
,
28
(
3
), pp.
133
144
.
24.
Chang
,
P. J.
,
Chang
,
F. W.
,
Yuen
,
M. C.
,
Otillar
,
R.
, and
Horsley
,
D. A.
,
2014
, “
Force Measurements of a Magnetic Micro Actuator Proposed for a Microvalve Array
,”
J. Micromech. Microeng.
,
24
(
3
), p.
034005
.
25.
Gieras
,
J. F.
,
Piech
,
Z. J.
, and
Tomczuk
,
B.
,
2011
,
Linear Synchronous Motors: Transportation and Automation Systems
,
CRC Press
,
Boca Raton, FL
.
26.
Cugat
,
O.
,
Delamare
,
J.
, and
Reyne
,
G.
,
2003
, “
Magnetic Micro-Actuators and Systems (MAGMAS)
,”
IEEE Trans. Magn.
,
39
(
6
), pp.
3607
3612
.
27.
Niarchos
,
D.
,
2003
, “
Magnetic MEMS: Key Issues and Some Applications
,”
Sens. Actuators, A
,
109
(
1
), pp.
166
173
.
28.
COMSOL
,
2011
, “
AB. AC/DC Module—User's Guide
,” COMSOL, Inc., Burlington, MA.
29.
Firouzeh
,
A.
,
Sun
,
Y.
,
Lee
,
H.
, and
Paik
,
J.
,
2013
, “
Sensor and Actuator Integrated Low-Profile Robotic Origami
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
4937
4944
.
30.
Grover
,
F. W.
,
2004
,
Inductance Calculations: Working Formulas and Tables
,
Courier Corporation
,
North Chelmsford, MA
.
31.
Kasap
,
S. O.
,
2006
,
Principles of Electronic Materials and Devices
,
McGraw-Hill
,
New York
.
32.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
You do not currently have access to this content.