Minimally invasive surgery (MIS) requires four degrees-of-freedom (DOFs) (pitch, translation, yaw, and roll) at the incision point, but the widely used planar remote center of motion (RCM) mechanisms only provide one degree-of-freedom. The remaining three DOFs are achieved through external means (such as cable-pulleys or actuators mounted directly on the distal-end) which adversely affect the performance and design complexity of a surgical manipulator. This paper presents a new RCM mechanism which provides the two most important DOFs (pitch and translation) by virtue of its mechanical design. Kinematics of the new mechanism is developed and its singularities are analyzed. To achieve maximum performance in the desired workspace region, an optimal configuration is also evaluated. The design is optimized to yield maximum manipulability and tool translation with smallest size of the mechanism. Unlike the traditional planar RCM mechanisms, the proposed design does not rely on external means to achieve translation DOF, and therefore, offers potential advantages. The mechanism can be a suitable choice for surgical applications demanding a compact distal-end or requiring multiple manipulators to operate in close proximity.

References

References
1.
Hawks
,
J. A.
,
Kunowski
,
J.
, and
Platt
,
S. R.
,
2012
, “
In Vivo Demonstration of Surgical Task Assistance Using Miniature Robots
,”
IEEE Trans. Biomed. Eng.
,
59
(
10
), pp.
2866
2873
.
2.
Hu
,
J. C.
,
Gu
,
X.
,
Lipsitz
,
S. R.
,
Barry
,
M. J.
,
D'Amico
,
A. V.
,
Weinberg
,
A. C.
, and
Keating
,
N. L.
,
2009
, “
Comparative Effectiveness of Minimally Invasive vs Open Radical Prostatectomy
,”
JAMA
,
302
(
14
), pp.
1557
1564
.
3.
Verhage
,
R.
,
Hazebroek
,
E.
,
Boone
,
J.
, and
Van Hillegersberg
,
R.
,
2009
, “
Minimally Invasive Surgery Compared to Open Procedures in Esophagectomy for Cancer: A Systematic Review of the Literature
,”
Minerva Chir.
,
64
(
2
), pp.
135
146
.
4.
Nisar
,
S.
, and
Hasan
,
O.
,
2015
, “
Telesurgical Robotics
,”
Encyclopedia of Information Science and Technology
, GI Global, Hershey, PA, pp.
5482
5490
.
5.
Tinelli
,
R.
,
Litta
,
P.
,
Meir
,
Y.
,
Surico
,
D.
,
Leo
,
L.
,
Fusco
,
A.
,
Angioni
,
S.
, and
Cicinelli
,
E.
,
2014
, “
Advantages of Laparoscopy Versus Laparotomy in Extremely Obese Women (BMI > 35) With Early-Stage Endometrial Cancer: A Multicenter Study
,”
Anticancer Res.
,
34
(
5
), pp.
2497
2502
.
6.
Peters
,
J. H.
,
Gibbons
,
G.
,
Innes
,
J.
,
Nichols
,
K.
,
Roby
,
S.
, and
Ellison
,
E.
,
1991
, “
Complications of Laparoscopic Cholecystectomy
,”
Surgery
,
110
(
4
), pp.
769
777
.
7.
Yau
,
K. K.
,
Siu
,
W. T.
,
Tang
,
C. N.
,
Yang
,
G. P. C.
, and
Li
,
M. K. W.
,
2007
, “
Laparoscopic Versus Open Appendectomy for Complicated Appendicitis
,”
J. Am. Coll. Surg.
,
205
(
1
), pp.
60
65
.
8.
Berguer
,
R.
,
Smith
,
W.
, and
Chung
,
Y.
,
2001
, “
Performing Laparoscopic Surgery Is Significantly More Stressful for the Surgeon Than Open Surgery
,”
Surg. Endoscopy
,
15
(
10
), pp.
1204
1207
.
9.
Vitiello
,
V.
,
Lee
,
S.
,
Cundy
,
T. P.
, and
Yang
,
G. Z.
,
2013
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
.
10.
Basdogan
,
C.
,
De
,
S.
,
Kim
,
J.
,
Muniyandi
,
M.
,
Kim
,
H.
, and
Srinivasan
,
M.
,
2004
, “
Haptics in Minimally Invasive Surgical Simulation and Training
,”
IEEE Comput. Graphics Appl.
,
24
(
2
), pp.
56
64
.
11.
Dankelman
,
J.
,
2004
, “
Surgical Robots and Other Training Tools in Minimally Invasive Surgery
,”
IEEE International Conference on Systems, Man and Cybernetics
(
SMC
), Hague, The Netherlands, Oct. 10–13, Vol.
3
, pp.
2459
2464
.
12.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2009
, “
Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics
,”
International Symposium on History of Machines and Mechanisms
, Springer Science & Business Media, Dordrecht, The Netherlands, pp.
337
354
.
13.
Dakin
,
G.
, and
Gagner
,
M.
,
2003
, “
Comparison of Laparoscopic Skills Performance Between Standard Instruments and Two Surgical Robotic Systems
,”
Surg. Endoscopy Other Interventional Tech.
,
17
(
4
), pp.
574
579
.
14.
Hassan
,
T.
,
Hameed
,
A.
,
Nisar
,
S.
,
Kamal
,
N.
, and
Hasan
,
O.
,
2014
, “
Al-Zahrawi: A Telesurgical Robotic System for Minimal Invasive Surgery
,”
IEEE Syst. J.
,
10
(
99
), pp.
1
11
.
15.
Madhani
,
A. J.
, and
Salisbury
,
J. K.
,
1998
, “
Force-Reflecting Surgical Instrument and Positioning Mechanism for Performing Minimally Invasive Surgery With Enhanced Dexterity and Sensitivity
,”
U.S. Patent No. 5,807,377
.
16.
van den Bedem
,
L.
,
2010
, “
Realization of a Demonstrator Slave for Robotic Minimally Invasive Surgery
,”
Ph.D. thesis
, Department of Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
17.
Hannaford
,
B.
,
Rosen
,
J.
,
Friedman
,
D. W.
,
King
,
H.
,
Roan
,
P.
,
Cheng
,
L.
,
Glozman
,
D.
,
Ma
,
J.
,
Kosari
,
S. N.
, and
White
,
L.
,
2013
, “
Raven-II: An Open Platform for Surgical Robotics Research
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
954
959
.
18.
Sung
,
G. T.
, and
Gill
,
I. S.
,
2001
, “
Robotic Laparoscopic Surgery: A Comparison of the da Vinci and Zeus Systems
,”
Urology
,
58
(
6
), pp.
893
898
.
19.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
20.
Aksungur
,
S.
,
2015
, “
Remote Center of Motion (RCM) Mechanisms for Surgical Operations
,”
Int. J. Appl. Math., Electron. Comput.
,
3
(
2
), pp.
119
126
.
21.
Hamlin
,
G.
, and
Sanderson
,
A.
,
1994
, “
A Novel Concentric Multilink Spherical Joint With Parallel Robotics Applications
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), San Diego, CA, May 8–13, Vol.
2
, pp.
1267
1272
.
22.
Taylor
,
R.
,
Funda
,
J.
,
Eldridge
,
B.
,
Gomory
,
S.
,
Gruben
,
K.
,
LaRose
,
D.
,
Talamini
,
M.
,
Kavoussi
,
L.
, and
Anderson
,
J.
,
1995
, “
A Telerobotic Assistant for Laparoscopic Surgery
,”
IEEE Eng. Med. Biol. Mag.
,
14
(
3
), pp.
279
288
.
23.
Taylor
,
R.
,
Funda
,
J.
,
Grossman
,
D.
,
Karidis
,
J.
, and
LaRose
,
D.
,
1995
, “
Remote Center-of-Motion Robot for Surgery
,”
U.S. Patent No. 5,397,323
.
24.
Rosen
,
J.
,
Brown
,
J.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2002
, “
The Bluedragon—A System for Measuring the Kinematics and Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, Vol.
2
, pp.
1876
1881
.
25.
Lum
,
M.
,
Rosen
,
J.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2006
, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.
26.
Gijbels
,
A.
,
Wouters
,
N.
,
Stalmans
,
P.
,
Van Brussel
,
H.
,
Reynaerts
,
D.
, and
Poorten
,
E. V.
,
2013
, “
Design and Realisation of a Novel Robotic Manipulator for Retinal Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
3598
3603
.
27.
Devengenzo
,
R.
,
Solomon
,
T.
, and
Cooper
,
T.
,
2015
, “
Cable Tensioning in a Robotic Surgical System
,”
U.S. Patent No. 9,050,119
.
28.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
29.
Kong
,
K.
,
Li
,
J.
,
Zhang
,
H.
,
Li
,
J.
, and
Wang
,
S.
,
2016
, “
Kinematic Design of a Generalized Double Parallelogram Based RCM Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Devices
,
10
(
4
), p.
041006
.
30.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
You do not currently have access to this content.