Remote center-of-motion (RCM) parallel manipulators (PMs) are fit for robotized minimally invasive surgery (MIS). RCM PMs with fixed linear actuators have the advantages of high stiffness, reduced moving mass, and higher rigidity and load capacity. However, there are very few available architectures of these types of PMs. Using the Lie group algebraic properties of the set of rigid-body displacements, this paper proposes a new family of RCM PMs with fixed linear actuators for MIS. The general motion with a remote center has four degrees-of-freedom (DOF) and is produced by the in-series concatenation of a spherical S pair and a prismatic P pair and, therefore, is said to be SP equivalent. The SP-equivalent PMs can be used in minimally invasive surgery. First, the kinematic bonds of limb chains and their mechanical generators for SP-equivalent RCM PMs are presented. Limb chains with fixed linear actuators are then derived using the closure of products in subgroups. Structural conditions for constructing an SP-equivalent RCM PM with linear fixed actuators are revealed. Helical pairs are introduced to remove a local rotation and yield a 360-deg-rotation capability of the moving platform. Numerous new architectures with practical potential are presented.

References

References
1.
Kwoh
,
Y. S.
,
Hou
,
J.
,
Jonckheere
,
E. A.
, and
Hayati
,
S.
,
1988
, “
A Robot With Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery
,”
IEEE Trans. Biomed. Eng.
,
35
(
2
), pp.
153
160
.
2.
Davies
,
B.
,
2000
, “
A Review of Robotics in Surgery
,”
Proc. Inst. Mech. Eng., Part H
,
214
(
1
), pp.
129
140
.
3.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
4.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2009
, “
Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics
,” International Symposium on History of Machines and Mechanisms: Proceedings of
HMM
2008, Springer, Dordrecht, The Netherlands, pp.
337
354
.
5.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
6.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of 4-DOF SP-Equivalent Parallel Manipulators: A Virtual Chain Approach
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1306
1319
.
7.
Wapler
,
M.
,
Urban
,
V.
,
Weisener
,
T.
,
Stallkamp
,
J.
,
Dürr
,
M.
, and
Hiller
,
A.
,
2003
, “
A Stewart Platform for Precision Surgery
,”
Trans. Inst. Meas. Control
,
25
(
4
), pp.
329
334
.
8.
Nakano
,
T.
,
Sugita
,
N.
,
Ueta
,
T.
,
Tamaki
,
Y.
, and
Mitsuishi
,
M.
,
2009
, “
A Parallel Robot to Assist Vitreoretinal Surgery
,”
Int. J. Comput. Assisted Radiol. Surg.
,
4
(
6
), pp.
517
526
.
9.
Bourges
,
J.-L.
,
Hubschman
,
J.-P.
,
Wilson
,
J.
,
Prince
,
S.
,
Tsao
,
T.-C.
, and
Schwartz
,
S.
,
2010
, “
Assessment of a Hexapod Surgical System for Robotic Micro-Macro Manipulations in Ocular Surgery
,”
Ophthalmic Res.
,
46
(
1
), pp.
25
30
.
10.
Yang
,
S.
,
MacLachlan
,
R. A.
, and
Riviere
,
C. N.
,
2015
, “
Manipulator Design and Operation of a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
761
772
.
11.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2005
, “
Analytical Kinematics Models and Special Geometries of a Class of 4-DOF Parallel Mechanisms
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1046
1055
.
12.
Chung
,
J.
,
Cha
,
H.-J.
,
Yi
,
B.-J.
, and
Kim
,
W. K.
,
2010
, “
Implementation of a 4-dof Parallel Mechanism as a Needle Insertion Device
,” International Conference on Robotics and Automation (
ICRA
), Anchorage, AK, May 3–7, pp.
662
668
.
13.
Beira
,
R.
,
Santos-Carreras
,
L.
,
Rognini
,
G.
,
Bleuler
,
H.
, and
Clavel
,
R.
,
2011
, “
Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
191
208
.
14.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
6
(
2
), p.
021008
.
15.
Li
,
T.
, and
Payandeh
,
S.
,
2002
, “
Design of Spherical Parallel Mechanisms for Application to Laparoscopic Surgery
,”
Robotica
,
20
(
02
), pp.
133
138
.
16.
Gherman
,
B.
,
Pisla
,
D.
,
Vaida
,
C.
, and
Plitea
,
N.
,
2012
, “
Development of Inverse Dynamic Model for a Surgical Hybrid Parallel Robot With Equivalent Lumped Masses
,”
Robot. Comput.-Integr. Manuf.
,
28
(
3
), pp.
402
415
.
17.
Pisla
,
D.
,
Gherman
,
B.
,
Vaida
,
C.
,
Suciu
,
M.
, and
Plitea
,
N.
,
2013
, “
An Active Hybrid Parallel Robot for Minimally Invasive Surgery
,”
Robot. Comput.-Integr. Manuf.
,
29
(
4
), pp.
203
221
.
18.
Puglisi
,
L. J.
,
Saltaren
,
R. J.
,
Portolés
,
G. R.
,
Moreno
,
H.
,
Cárdenas
,
P. F.
, and
Garcia
,
C.
,
2013
, “
Design and Kinematic Analysis of 3PSS-1S Wrist for Needle Insertion Guidance
,”
Robot. Auton. Syst.
,
61
(
5
), pp.
417
427
.
19.
Essomba
,
T.
,
Nouaille
,
L.
,
Laribi
,
M. A.
,
Nelson
,
C. A.
,
Zeghloul
,
S.
, and
Poisson
,
G.
,
2014
, “
Spherical Wrist Dimensional Synthesis Adapted for Tool-Guidance Medical Robots
,”
Mech. Ind.
,
15
(
3
), pp.
217
223
.
20.
Hong
,
M. B.
, and
Jo
,
Y.-H.
,
2014
, “
Design of a Novel 4-DOF Wrist-Type Surgical Instrument With Enhanced Rigidity and Dexterity
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
500
511
.
21.
Li
,
J.
,
Zhang
,
G.
,
Müller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
22.
Tanev
,
T. K.
,
2014
, “
Minimally-Invasive-Surgery Parallel Robot With Non-Identical Limbs
,” IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (
MESA
), Ancona, Italy, Sept. 10–12.
23.
Ibrahim
,
K.
,
Ramadan
,
A.
,
Fanni
,
M.
,
Kobayashi
,
Y.
,
Abo-Ismail
,
A.
, and
Fujie
,
M. G.
,
2015
, “
Development of a New 4-DOF Endoscopic Parallel Manipulator Based on Screw Theory for Laparoscopic Surgery
,”
Mechatronics
,
28
, pp.
4
17
.
24.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2015
, “
Forward Kinematics Solution Distribution and Analytic Singularity-Free Workspace of Linear-Actuated Symmetrical Spherical Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041007
.
25.
Herve
,
J. M.
,
1978
, “
Analyse structurelle des mécanismes par groupe des déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
26.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
173
180
.
27.
Hervé
,
J. M.
,
2006
, “
Uncoupled Actuation of Pan-Tilt Wrists
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
56
64
.
28.
Li
,
Q.
, and
Hervé
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1333
1343
.
29.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
.
30.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
.
31.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Pérez-Soto
,
G. I.
, and
Rocha-Chavarría
,
J.
,
2008
, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112302
.
32.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.
33.
Huang
,
Z.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
82
.
34.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
Berlin, Germany
.
35.
Kong
,
X.
, and
Yu
,
J.
,
2015
, “
Type Synthesis of Two-Degrees-of-Freedom 3-4R Parallel Mechanisms With Both Spherical Translation Mode and Sphere-on-Sphere Rolling Mode
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041018
.
36.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2002
, “
Structure Synthesis of 4-DOF and 5-DOF Parallel Manipulators With Identical Limbs
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
799
810
.
37.
Qu
,
H.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Structural Synthesis of a Class of 3-DOF Wrist Mechanisms With Redundantly-Actuated Closed-Loop Units
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
2
), pp.
276
290
.
38.
Kumar
,
N.
,
Piccin
,
O.
, and
Bayle
,
B.
,
2014
, “
A Task-Based Type Synthesis of Novel 2T2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
77
, pp.
59
72
.
39.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots Via Theory of Linear Transformations
,”
Eur. J. Mech.-A/Solids
,
23
(
6
), pp.
1021
1039
.
40.
Gogu
,
G.
,
2012
, “
T2R1-Type Parallel Manipulators With Bifurcated Planar-Spatial Motion
,”
Eur. J. Mech.-A/Solids
,
33
, pp.
1
11
.
41.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2013
, “
Task-Oriented Structure Synthesis of a Class of Parallel Manipulators Using Motion Constraint Generator
,”
Mech. Mach. Theory
,
70
, pp.
394
406
.
42.
Gao
,
F.
,
Yang
,
J.
, and
Ge
,
Q. J.
,
2011
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011003
.
43.
Li
,
Q.
,
Huang
,
Z.
, and
Hervé
,
J. M.
,
2004
, “
Displacement Manifold Method for Type Synthesis of Lower-Mobility Parallel Mechanisms
,”
Sci. China, Ser. E: Technol. Sci.
,
47
(
6
), pp.
641
650
.
44.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.
45.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Structural Shakiness of Nonoverconstrained Translational Parallel Mechanisms With Identical Limbs
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
25
36
.
46.
Li
,
Q.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
401
410
.
You do not currently have access to this content.