This paper studies the collision problem of a robot manipulator and presents a method to minimize the impact force by pre-impact configuration designing. First, a general dynamic model of a robot manipulator capturing a target is established by spatial operator algebra (SOA) and a simple analytical formula of the impact force is obtained. Compared with former models proposed in literatures, this model has simpler form, wider range of applications, O(n) computation complexity, and the system Jacobian matrix can be provided as a production of the configuration matrix and the joint matrix. Second, this work utilizes the impulse ellipsoid to analyze the influence of the pre-impact configuration and the impact direction on the impact force. To illustrate the inertia message of each body in the joint space, a new concept of inertia quasi-ellipsoid (IQE) is introduced. We find that the impulse ellipsoid is constituted of the inertia ellipsoids of the robot manipulator and the target, while each inertia ellipsoid is composed of a series of inertia quasi-ellipsoids. When all inertia quasi-ellipsoids exhibit maximum (minimum) coupling, the impulse ellipsoid should be the flattest (roundest). Finally, this paper provides the analytical expression of the impulse ellipsoid, and the eigenvalues and eigenvectors are used as measurements to illustrate the size and direction of the impulse ellipsoid. With this measurement, the desired pre-impact configuration and the impact direction with minimum impact force can be easily solved. The validity and efficiency of this method are verified by a PUMA robot and a spatial robot.

References

References
1.
Yoshida
,
K.
,
Sashida
,
N.
,
Kurazume
,
R.
, and
Umetani
,
Y.
,
1992
, “
Modeling of Collision Dynamics for Space Free-Floating Links With Extended Generalized Inertia Tensor
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), Nice, France, May 12–14, pp.
899
904
.
2.
Umetani
,
Y.
, and
Yoshida
,
K.
,
1987
, “
Continuous Path Control of Space Manipulators Mounted on OMV
,”
Acta Astronaut.
,
15
(
12
), pp.
981
986
.
3.
Yoshikawa
,
S.
, and
Yamada
,
K.
,
1994
, “
Impact Estimation of a Space Robot at Capturing a Target
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Munich, Germany, Sept. 12–16, pp.
1570
1577
.
4.
Liu
,
S.
,
Wu
,
L.
, and
Lu
,
Z.
,
2007
, “
Impact Dynamics and Control of a Flexible Dual-Arm Space Robot Capturing an Object
,”
Appl. Math. Comput.
,
185
(
2
), pp.
1149
1159
.
5.
Guo
,
W.
, and
Wang
,
T.
,
2015
, “
A Methodology for Simulations of Multi-Rigid Body Systems With Topology Changes
,”
Multibody Syst. Dyn.
,
35
(
1
), pp.
25
38
.
6.
Gan
,
D.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
,
Caldwell
,
D. G.
, and
Seneviratne
,
L.
,
2013
, “
Stiffness Design for a Spatial Three Degrees of Freedom Serial Compliant Manipulator Based on Impact Configuration Decomposition
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011002
.
7.
Várkonyi
,
P. L.
,
2015
, “
On the Stability of Rigid Multibody Systems With Applications to Robotic Grasping and Locomotion
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041012
.
8.
Zhang
,
M.
, and
Gosselin
,
C.
,
2016
, “
Optimal Design of Safe Planar Manipulators Using Passive Torque Limiters
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011008
.
9.
Wang
,
Q.
,
Quan
,
Q.
,
Deng
,
Z.
, and
Hou
,
X.
,
2016
, “
An Underactuated Robotic Arm Based on Differential Gears for Capturing Moving Targets: Analysis and Design
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041012
.
10.
Ko
,
W. H.
,
Chiang
,
W. H.
,
Hsu
,
Y. H.
,
Yu
,
M. Y.
,
Lin
,
H. S.
, and
Lin
,
P. C.
,
2016
, “
A Model-Based Two-Arm Robot With Dynamic Vertical and Lateral Climbing Behaviors
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
044503
.
11.
Yoshida
,
K.
,
Mavroidis
,
C.
, and
Dubowsky
,
S.
,
1997
, “
Experimental Research on Impact Dynamics of Spaceborne Manipulator Systems
,”
Experimental Robotics IV
,
Springer
,
Berlin
, pp.
436
447
.
12.
Kim
,
J. O.
,
Wayne
,
M.
, and
Khosla
,
P. K.
,
1994
, “
Exploiting Redundancy to Reduce Impact Force
,”
J. Intell. Rob. Syst.
,
9
(
3
), pp.
273
290
.
13.
Wee
,
L.-B.
, and
Walker
,
M. W.
,
1993
, “
On the Dynamics of Contact Between Space Robots and Configuration Control for Impact Minimization
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
581
591
.
14.
Huang
,
P.
,
Yuan
,
J.
,
Xu
,
Y.
, and
Liu
,
R.
,
2006
, “
Approach Trajectory Planning of Space Robot for Impact Minimization
,” IEEE
International Conference on Information Acquisition
(
ICIA
), Weihai, China, Aug. 20–23, pp.
382
387
.
15.
Huang
,
P.
,
Xu
,
Y.
, and
Liang
,
B.
,
2005
, “
Contact and Impact Dynamics of Space Manipulator and Free-Flying Target
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Edmonton, AB, Canada, Aug. 2–6, pp.
1181
1186
.
16.
Yoshida
,
K.
, and
Sashida
,
N.
,
1993
, “
Modeling of Impact Dynamics and Impulse Minimization for Space Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Yokohama, Japan, July 26–30, pp.
2064
2069
.
17.
Walker
,
I. D.
,
1994
, “
Impact Configurations and Measures for Kinematically Redundant and Multiple Armed Robot Systems
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
670
683
.
18.
Barcio
,
B. T.
, and
Walker
,
I. D.
,
1994
, “
Impact Ellipsoids and Measures for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Diego, CA, May 8–13, pp.
1588
1594
.
19.
Featherstone
,
R.
,
1983
, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias
,”
Int. J. Rob. Res.
,
2
(
1
), pp.
13
30
.
20.
Rodriguez
,
G.
,
1987
, “
Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
624
639
.
21.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut. Sci.
,
40
(
1
), pp.
27
50
.
22.
Jain
,
A.
, and
Rodriguez
,
G.
,
1992
, “
Recursive Flexible Multibody System Dynamics Using Spatial Operators
,”
J. Guid., Control, Dyn.
,
15
(
6
), pp.
1453
1466
.
23.
Jain
,
A.
, and
Rodriguez
,
G.
,
1993
, “
An Analysis of the Kinematics and Dynamics of Underactuated Manipulators
,”
IEEE Trans. Rob. Autom.
,
9
(
4
), pp.
411
422
.
24.
Jain
,
A.
, and
Rodriguez
,
G.
,
1995
, “
Base-Invariant Symmetric Dynamics of Free-Flying Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
4
), pp.
585
597
.
25.
Zhixiang
,
T.
, and
Hongtao
,
W.
,
2010
, “
Spatial Operator Algebra for Free-Floating Space Robot Modeling and Simulation
,”
Chin. J. Mech. Eng.
,
23
(
5
), pp.
635
640
.
26.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
, Chap. 5.
27.
Xianda
,
Z.
,
2004
, “
Characteristic Analysis
,”
Matrix Analysis and Applications
,
Tsinghua University Press
,
Beijing, China
, pp.
453
588
.
You do not currently have access to this content.