Kinematic chains are obtained from the helicoid–helicoid intersections applying the method of surfaces generated by kinematic dyads. Some local properties of the helicoids are used to obtain the bifurcation points in the configuration space of the obtained kinematic chains. It is proven that certain relationships between the two helicoids lead to a periodic behavior of these bifurcations, which suggest that, if the kinematic pairs (P and H) could move without a limit, the kinematic chain would theoretically feature an infinity of operation modes. Finally, a mechanism which is able to change the helicoid–helicoid intersection curve during its motion is proven to change its finite mobility in one of its operation modes.

References

1.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Yan
,
H. S.
,
2009
, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, (ReMAR 2009), London, June 22–24, pp.
1
7
.
2.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,” Recent Advances in Robot Kinematics,
J.
Lenarčič
and
V.
Parent-Castelli
, eds.,
Springer, Dordrecht
,
The Netherlands
, pp.
359
368
.
3.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
3
), pp.
743
761
.
4.
Zeng
,
Q.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2016
, “
Design of General Kinematotropic Mechanisms
,”
Rob. Comput. Integr. Manuf.
,
38
, pp.
67
81
.
5.
Kong
,
X.
,
2014
, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method
,”
Mech. Mach. Theory
,
74
, pp.
188
201
.
6.
Kong
,
X.
,
2012
, “
Type Synthesis of Variable Degrees-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes
,”
ASME
Paper No. DETC2012-70621.
7.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities as Configuration Space Singularities
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
F.
Thomas
, eds.,
Springer
, Dordrecht,
The Netherlands
, pp.
183
192
.
8.
Dai
,
J.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
9.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2016
, “
Reconfigurable Chains of Bifurcating Type III Bricard Linkages
,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
3
14
.
10.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
11.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
12.
Kong
,
X.
, and
Jin
,
Y.
,
2016
, “
Type Synthesis of 3-DOF Multi-Mode Translational/Spherical Parallel Mechanisms With Lockable Joints
,”
Mech. Mach. Theory
,
96
(
Pt. 2
), pp.
323
333
.
13.
López-Custodio
,
P.
,
Rico
,
J.
,
Cervantes-Sánchez
,
J.
, and
Pérez-Soto
,
G.
,
2016
, “
Reconfigurable Mechanisms From the Intersection of Surfaces
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021029
.
14.
Torfason
,
L.
, and
Crossley
,
F.
,
1971
, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms
,”
3rd World Congress for the Theory of Machines and Mechanisms
, Vol. B, Kupari, Yugoslavia, pp.
247
258
.
15.
Torfason
,
L.
, and
Sharma
,
A.
,
1973
, “
Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
704
708
.
16.
Shrivastava
,
A.
, and
Hunt
,
K.
,
1973
, “
Dwell Motion From Spatial Linkages
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
511
518
.
17.
Lee
,
C.
, and
Hervé
,
J.
,
2012
, “
A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type
,”
Advances in Reconfigurable Mechanisms and Robots I
,
M. Z. J. S.
Dai
and
X.
Kong
, eds., Springer-Verlag, London, pp.
35
43
.
18.
Cui
,
L.
, and
Dai
,
J.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6r Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031004
.
19.
Levin
,
J.
,
1976
, “
A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of Quadric Surfaces
,”
Commun. ACM
,
19
(
10
), pp.
555
563
.
20.
Levin
,
J.
,
1979
, “
Mathematical Models for Determining the Intersection of Quadric Surfaces
,”
Comput. Graphics Image Process.
,
11
(
1
), pp.
73
87
.
21.
Whitney
,
H.
,
1965
, “
Tangents to an Analytic Variety
,”
Ann. Math.
,
81
(
3
), pp.
496
549
.
22.
Müller
,
A.
,
1998
, “
Generic Mobility of Rigid Body Mechanisms
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1240
1255
.
23.
Müller
,
A.
,
2015
, “
Representation of the Kinematic Topology of Mechanisms for Kinematic Analysis
,”
Mech. Mach. Theory
,
6
, pp.
137
146
.
24.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
25.
Krivoshapko
,
S.
, and
Ivanov
,
V.
,
2015
,
Encyclopedia of Analytical Surfaces
,
Springer
, Cham,
Switzerland
.
26.
Rico
,
J.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
.
27.
Hervé
,
J.
,
1978
, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
28.
Crane
,
C.
, and
Duffy
,
J.
,
1998
,
Kinematic Analysis of Robot Manipulators
,
Cambridge University Press
,
Cambridge, UK
.
29.
Waldron
,
K.
,
1967
, “
A Family of Overconstrained Linkages
,”
J. Mech.
,
2
(
2
), pp.
201
211
.
30.
Lee
,
C.
, and
Hervé
,
J.
,
2010
, “
Mechanical Generators of 2-DoF Translation Along a Ruled Surface
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Stanisic
, eds.,
Springer
, Dordrecht,
The Netherlands
, pp.
73
80
.
31.
Su
,
H.
, and
McCarthy
,
J.
,
2005
, “
Dimensioning a Constrained Parallel Robot to Reach a Set of Task Positions
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
4026
4030
.
32.
Liu
,
Y.
, and
Zsombor-Murray
,
P.
,
1995
, “
Intersection Curves Between Quadric Surfaces of Revolution
,”
Trans. Can. Soc. Mech. Eng.
,
19
(
4
), pp.
435
453
.
33.
Demazure
,
M.
,
2000
,
Bifurcations and Catastrophes
,
Springer-Verlag
,
Berlin
.
34.
Lerbet
,
J.
,
1998
, “
Analytic Geometry and Singularities of Mechanisms
,”
Z. Angew. Math. Mech.
,
78
(
10
), pp.
687
694
.
35.
Müller
,
A.
,
2002
, “
Local Analysis of Singular Configuration of Open and Closed Loop Manipulators
,”
Multibody Syst. Dyn.
,
8
(
3
), pp.
297
326
.
36.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
.
37.
Diez-Martínez
,
C.
,
Rico
,
J.
, and
Cervantes-Sánchez
,
J.
,
2006
, “
Mobility and Connectivity in Multiloop Linkages
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Roth
, eds.,
Springer
, Dordrecht,
The Netherlands
, pp.
455
464
.
38.
López-Custodio
,
P.
,
Rico
,
J.
,
Cervantes-Sánchez
,
J.
,
Pérez-Soto
,
G.
, and
Díez-Martínez
,
C.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Eur. J. Mech. - A/Solids
,
61
, pp.
198
215
.
39.
Rico
,
J.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and the Higher Order Kinematic Analysis of Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
40.
López-Custodio
,
P.
,
2012
, “
Análisis Cinemáticos de Orden Superior y Movilidad de Cadenas Cinemáticas
,” B.Sc. thesis, Universidad de Guanajuato, Salamanca, Gto. Mexico.
41.
Müller
,
A.
,
2016
, “
Recursive Higher-Order Constraints for Linkages With Lower Kinematic Pairs
,”
Mech. Mach. Theory
,
100
, pp.
33
43
.
42.
Kreyszig
,
E.
,
1959
,
Differential Geometry
,
University of Toronto Press
,
Toronto, ON, Canada
.
43.
Ye
,
X.
, and
Maekawa
,
T.
,
1999
, “
Differential Geometry of Intersection Curves of Two Surfaces
,”
Comput. Aided Geometric Des.
,
16
(
8
), pp.
767
788
.
44.
Barnhill
,
R.
, and
Kersey
,
S.
,
1990
, “
A Marching Method for Parametric Surface/Surface Intersection
,”
Comput. Aided Geometric Des.
,
7
(
1
), pp.
257
280
.
45.
Pérez-Soto
,
G.
, and
Tadeo
,
A.
,
2006
, “
Síntesis de Número de Cadenas Cinemáticas, un Nuevo Enfoque y Nuevas Herramientas Matemáticas
,” M.Sc. thesis, Universidad de Guanajuato, Salamanca, Gto. Mexico.
46.
Lee
,
C.
, and
Hervé
,
J.
,
2016
, “
Various Types of RC//-Like Linkages and the Discontinuously Movable Koenigs Joint
,”
Mech. Mach. Theory
,
96
(
Pt. 2
), pp.
255
268
.
47.
Tadeo-Chávez
,
A.
,
Rico
,
J.
,
Cervantes-Sánchez
,
J.
,
Pérez-Soto
,
G.
, and
Müller
,
A.
,
2011
, “
Screw Systems Generated by Subalgebras: A Further Analysis
,”
ASME
Paper No. DETC2011-48304.
48.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
You do not currently have access to this content.