Adaptive cable-driven parallel robots are a special subclass of cable-driven systems in which the locations of the pulley blocks are modified as a function of the end-effector pose to obtain optimal values of given performance indices within a target workspace. Due to their augmented kinematic redundancy, such systems enable larger workspace volume and higher performance compared to traditional designs featuring the same number of cables. Previous studies have introduced a systematic method to optimize design and trajectory planning of the moving pulley-blocks for a given performance index. In this paper, we study the motions of the pulley blocks that optimize two performance indices simultaneously: stiffness and dexterity. Specifically, we present a method to determine the pulley blocks motions that guarantee ideal dexterity with the best feasible elastic stiffness, as well as those that guarantee isotropic elastic stiffness with the best feasible dexterity. We demonstrate the proposed approach on some practical cases of planar adaptive cable-driven parallel robots.

References

References
1.
Rosati
,
G.
,
Secoli
,
R.
,
Zanotto
,
D.
,
Rossi
,
A.
, and
Boschetti
,
G.
,
2008
, “
Planar Robotic Systems for Upper-Limb Post-Stroke Rehabilitation
,”
ASME
Paper No. IMECE2008-67273.
2.
Jin
,
X.
,
Cui
,
X.
, and
Agrawal
,
S. K.
,
2015
, “
Design of a Cable-Driven Active Leg Exoskeleton (c-Alex) and Gait Training Experiments With Human Subjects
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
5578
5583
.
3.
Rosati
,
G.
,
Zanotto
,
D.
, and
Agrawal
,
S. K.
,
2011
, “
On the Design of Adaptive Cable-Driven Systems
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021004
.
4.
Abdolshah
,
S.
, and
Barjuei
,
E. S.
,
2015
, “
Linear Quadratic Optimal Controller for Cable-Driven Parallel Robots
,”
Front. Mech. Eng.
,
10
(
4
), pp.
344
351
.
5.
Rosati
,
G.
, and
Zanotto
,
D.
,
2008
, “
A Novel Perspective in the Design of Cable-Driven Systems
,”
ASME
Paper No. IMECE2008-67272.
6.
Zanotto
,
D.
,
Rosati
,
G.
,
Minto
,
S.
, and
Rossi
,
A.
,
2014
, “
Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
974
979
.
7.
Zhou
,
X.
,
Tang
,
C. P.
, and
Krovi
,
V.
, 2012, “
Analysis Framework for Cooperating Mobile Cable Robots
,” IEEE International Conference on
Robotics and Automation (ICRA)
, St. Paul, MN, May 14–18, pp.
3128
3133
.
8.
Zhou
,
X.
,
Tang
,
C. P.
, and
Krovi
,
V.
,
2013
, “
Cooperating Mobile Cable Robots: Screw Theoretic Analysis
,”
Redundancy in Robot Manipulators and Multi-Robot Systems
,
Springer
,
Berlin
, pp.
109
123
.
9.
Zhou
,
X.
,
Jun
,
S. K.
, and
Krovi
,
V.
,
2013
, “
Wrench Reconfigurability Via Attachment Point Design in Mobile Cable Robots
,”
ASME
Paper No. DETC2013-13091.
10.
Zhou
,
X.
,
Jun
,
S. K.
, and
Krovi
,
V.
,
2014
, “
Stiffness Modulation Exploiting Configuration Redundancy in Mobile Cable Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Hong Kong, China, May 31–June 7, pp.
5934
5939
.
11.
Rosati
,
G.
,
Gallina
,
P.
,
Masiero
,
S.
, and
Rossi
,
A.
,
2005
, “
Design of a New 5 dof Wire-Based Robot for Rehabilitation
,” 9th International Conference on Rehabilitation Robotics (
ICORR
), Chicago, IL, June 28–July 1, pp.
430
433
.
12.
Masiero
,
S.
,
Armani
,
M.
, and
Rosati
,
G.
,
2011
, “
Upper-Limb Robot-Assisted Therapy in Rehabilitation of Acute Stroke Patients: Focused Review and Results of New Randomized Controlled Trial
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
355
366
.
13.
Nguyen
,
D. Q.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2014
, “
On the Analysis of Large-Dimension Reconfigurable Suspended Cable-Driven Parallel Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Hong Kong, China, May 31–June 7, pp.
5728
5735
.
14.
Nguyen
,
D. Q.
, and
Gouttefarde
,
M.
,
2014
, “
Study of Reconfigurable Suspended Cable-Driven Parallel Robots for Airplane Maintenance
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
1682
1689
.
15.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
,
Wenger
,
P.
, and
Girin
,
A.
,
2015
, “
A Reconfigurable Cable-Driven Parallel Robot for Sandblasting and Painting of Large Structures
,”
Cable-Driven Parallel Robots
,
Springer International Publishing
, Cham, Switzerland, pp.
275
291
.
16.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2015
, “
A Reconfiguration Strategy for Reconfigurable Cable-Driven Parallel Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp.
1613
1620
.
17.
Gosselin
,
C.
,
1988
, “
Kinematics Analysis Optimization and Programming of Parallel Robot Manipulators
,” Doctoral dissertation, McGill University, Montreal, Quebec, Canada.
18.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
19.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6–6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
.
20.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2005
, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.
21.
Yeo
,
S. H.
,
Yang
,
G.
, and
Lim
,
W. B.
,
2013
, “
Design and Analysis of Cable-Driven Manipulators With Variable Stiffness
,”
Mech. Mach. Theory
,
69
, pp.
230
244
.
22.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “
Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms
,”
Advances in Robot Kinematics: Analysis and Control
,
Springer
Netherlands
, Dordrecht, The Netherlands, pp.
105
114
.
23.
Fang
,
S.
,
Franitza
,
D.
,
Torlo
,
M.
,
Bekes
,
F.
, and
Hiller
,
M.
,
2004
, “
Motion Control of a Tendon-Based Parallel Manipulator Using Optimal Tension Distribution
,”
IEEE/ASME Trans. Mechatronics
,
9
(
3
), pp.
561
568
.
24.
Surdilovic
,
D.
,
Radojicic
,
J.
, and
Krüger
,
J.
,
2013
, “
Geometric Stiffness Analysis of Wire Robots: A Mechanical Approach
,”
Cable-Driven Parallel Robots
,
Springer
,
Berlin
, pp.
389
404
.
25.
Kozak
,
K.
,
Zhou
,
Q.
, and
Wang
,
J.
,
2006
, “
Static Analysis of Cable-Driven Manipulators With Non-Negligible Cable Mass
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
425
433
.
26.
Riehl
,
N.
,
Gouttefarde
,
M.
,
Krut
,
S.
,
Baradat
,
C.
, and
Pierrot
,
F.
,
2009
, “
Effects of Non-Negligible Cable Mass on the Static Behavior of Large Workspace Cable-Driven Parallel Mechanisms
,” IEEE International Conference on Robotics and Automation (
ICRA
), Kobe, Japan, May 12–17, pp.
2193
2198
.
27.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2009
, “
Antagonistic Variable Stiffness Elements
,”
Mech. and Mach. Theory
,
44
(
9
), pp.
1746
1758
.
28.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(
1
), pp.
13
21
.
29.
Lafourcade
,
P.
, and
Llibre
,
M.
,
2003
, “
First Steps Toward a Sketch-Based Design Methodology for Wire-Driven Manipulators
,”
International Conference on Advanced Intelligent Mechatronics
(AIM)
, Kobe, Japan, July 20–24, Vol.
1
, pp.
143
148
.
30.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J. P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
31.
Gosselin
,
C. M.
,
1990
, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
IEEE
International Conference on Robotics and Automation, Cincinatti, OH, May 13–18, pp.
650
655
.
32.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,” Fifth International Conference on Advanced Robotics, Robots in Unstructured Environments (
ICAR
), Pisa, Italy, June 19–22, pp.
1130
1135
.
You do not currently have access to this content.