This paper presents a general algorithm for solving the dynamic of tree structure robots with rigid and flexible links, active and passive joints, and with a fixed or floating base. The algorithm encompasses in a unified approach both the inverse and direct dynamics. It addresses also the hybrid case where each active joint is considered with known joint torque as in the direct dynamic case, or with known joint acceleration as in the inverse dynamic case. To achieve this goal, we propose an efficient recursive approach based on the generalized Newton–Euler equations of flexible tree-structure systems. This new general hybrid algorithm is easy to program either numerically or using efficient customized symbolic techniques. It is of great interest for studying floating base systems with soft appendages as those currently investigated in soft bio-inspired robotics or when a robotic system has to modify its structure for some particular tasks, such as transforming an active joint into a compliant flexible one, or modifying a task with a floating base into one with fixed base.

References

References
1.
Luh
,
J. Y. S.
,
Walker
,
M. W.
, and
Paul
,
R. C. P.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
(
2
), pp.
69
76
.
2.
Featherstone
,
R.
,
1983
, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias
,”
Int. J. Rob. Res.
,
2
(
3
), pp.
87
101
.
3.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
4.
Jain
,
A.
, and
Rodriguez
,
G.
,
1992
, “
Recursive Flexible Multibody System Dynamics Using Spatial Operators
,”
J. Guid. Control Dyn.
,
15
(
6
), pp.
1453
1466
.
5.
Boyer
,
F.
, and
Khalil
,
W.
,
1998
, “
An Efficient Calculation of Flexible Manipulator Inverse Dynamics
,”
Int. J. Rob. Res.
,
17
(
3
), pp.
282
293
.
6.
Hughes
,
P. C.
, and
Sincarsin
,
G. B.
,
1989
, “
Dynamics of Elastic Multibody Chains: Part B-Global Dynamics
,”
Dyn. Stab. Syst.
,
4
(
3–4
), pp.
227
243
.
7.
Sharf
,
I.
, and
D’Eleuterio
,
G. M. T.
,
1992
, “
Parallel Simulation Dynamics for Elastic Multibody Chains
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
597
606
.
8.
Anderson
,
K. S.
,
1990
, “
Recursive Derivation of Explicit Equations of Motion for Efficient Dynamic/Control Simulation of Large Multibody Systems
,” Ph.D. thesis, Stanford University, Stanford, CA.
9.
Khalil
,
W.
, and
Kleinfinger
,
J.-F.
,
1986
, “
A New Geometric Notation for Open and Closed-Loop Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 7–10, pp.
1174
1180
.
10.
Verl
,
A.
,
Albu-Schaeffer
,
A.
, and
Brock
,
O.
,
eds.
,
2015
,
Soft Robotics: Transferring Theory to Application
,
Springer
,
New York
.
11.
Roberts
,
T. J.
, and
Azizi
,
E.
,
2011
, “
Flexible Mechanisms: The Diverse Roles of Biological Springs in Vertebrate Movement
,”
J. Exp. Biol.
,
214
(
3
), pp.
353
361
.
12.
Pfeifer
,
R.
,
Lungarella
,
M.
, and
Iida
,
F.
,
2007
, “
Self-Organization, Embodiment, and Biologically Inspired Robotics
,”
Science
,
318
(
5853
), pp.
1088
1093
.
13.
Khosla
,
P. K.
,
1986
, “
Real-Time Control and Identification of Direct-Drive Manipulators
,” Ph.D. thesis, Carnegie Mellon, Pittsburgh, PA.
14.
Khalil
,
W.
, and
Kleinfinger
,
J.-F.
,
1987
, “
Minimum Operations and Minimum Parameters of the Dynamic Model of Tree Structure Robots
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
517
526
.
15.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling Identification and Control of Robots
,
Hermes, Penton-Sciences
,
London
.
16.
Canavin
,
J.
, and
Likins
,
P.
,
1977
, “
Floating Reference Frames for Flexible Spacecraft
,”
J. Spacecr. Rockets
,
14
(
12
), pp.
724
732
.
17.
Bae
,
D. S.
, et al. ,
2001
, “
A Generalized Recursive Formulation for Constrained Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
50
(
8
), pp.
1841
1859
.
18.
Meirovitch
,
L.
,
1989
,
Dynamics and Control of Structures
,
Wiley
,
New York
.
19.
Craig
,
J. J.
,
1986
,
Introduction to Robotics: Mechanics and Control
,
Addison Wesley Publishing Company
,
Reading, UK
.
20.
Angeles
,
J.
,
2002
,
Fundamentals of Robotic Mechanical Systems
,
2nd ed.
,
Springer-Verlag
,
New York
.
21.
Jain
,
A.
,
2011
,
Robot and Multibody Dynamics: Analysis and Algorithms
,
Springer-Verlag
,
Berlin
.
22.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotics Mechanism
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
3
), pp.
205
211
.
23.
Rodriguez
,
G.
,
Kreutz
,
K.
, and
Jain
,
A.
,
1991
, “
A Spatial Operator Algebra for Manipulator Modeling and Control
,”
Int. J. Rob. Res.
,
10
(
4
), pp.
371
381
.
24.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics—Part 1: Basic Algorithm
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
867
875
.
25.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics—Part 2: Trees, Loops and Accuracy
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
876
892
.
26.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
A Logarithm Complexity Divide-and-Conquer Algorithm for Multiflexible Articulated Body Systems
,”
Comput. Nonlinear Dyn.
,
2
(
1
), pp.
10
21
.
27.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
An Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems
,”
Comput. Nonlinear Dyn.
,
48
(
1–2
), pp.
199
215
.
28.
Vereshchagin
,
A. F.
,
1974
, “
Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators
,”
Eng. Cybern.
,
6
, pp.
65
70
.
29.
Armstrong
,
W. W.
,
1979
, “
Recursive Solution to the Equations of Motiob of an n-Link Manipulator
,”
Fifth World Congress on the Theory of Machines and Mechanisms
(IFToMM), Montreal, Canada, July 8–13, Vol.
2
, pp.
1342
2346
.
30.
Brand
, I
. H.
,
Johani
,
R.
, and
Otter
,
M.
,
1986
, “
A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix
,”
IFAC/IFIP/IMACS International Symposium on Theory of Robots
, Vienna, Austria, pp.
95
100
.
31.
Bae
,
D. S.
, and
Haug
,
E. J.
,
1987
, “
A Recursive Formulation for Constrained Mechanical Systems—Part I: Open Loop Systems
,”
Mech. Struct. Mach.
,
15
(
3
), pp.
359
382
.
32.
Rosenthal
,
D.
,
1987
, “
Order n Formulation for Equations of Motions of Multibody Systems
,”
SDIO NASA Workshop on Multibody Simulation
, Jet Propulsion Laboratory, Arcadia, CA, pp.
1122
1150
.
33.
Jain
,
A.
,
1991
, “
A Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,”
J. Guid. Control Dyn.
,
14
(
3
), pp.
531
542
.
34.
Stelzle
,
W.
,
Kecskemethy
,
A.
, and
Hiller
,
M.
,
1995
, “
A Comparative Study of Recursive Methods
,”
Arch. Study Recursive Methods
,
66
(
1
), pp.
9
19
.
35.
Featherstone
,
R.
, and
Orin
,
D. E.
,
2008
, “
Dynamics
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
,
eds.
,
Springer-Verlag
,
Berlin
, pp. 37–63.
36.
Khalil
,
W.
, and
Creusot
,
D.
,
1997
, “
SYMORO+: A System for the Symbolic Modelling of Robots
,”
Robotica
,
15
(
2
), pp.
153
161
.
37.
Jain
,
A.
, and
Rodriguez
,
G.
,
1993
, “
Recursive Dynamics Algorithm for Multibody Systems With Prescribed Motion
,”
J. Guid., Control Dyn.
,
16
(
4
), pp.
830
837
.
38.
Albu-Schaffer
,
A.
,
2008
, “
From Torque Feedback-Controlled Lightweight Robots to Intrinsically Compliant Systems
,”
IEEE Robotics and Automation Magazine
, pp.
20
30
.
39.
Spong
,
M.
,
1987
, “
Modelling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
4
), pp.
310
319
.
40.
Khalil
,
W.
, and
Gautier
,
M.
,
2000
, “
Modeling of Mechanical Systems With Lumped Elasticity
,” IEEE International Conference on Robotics and Automation (
ICRA
), San Francisco, CA, Apr. 24–28, pp.
3964
3969
.
41.
Feron
,
E.
, and
Johnson
,
E.
,
2008
, “
Aerial Robots
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
,
eds
.,
Springer-Verlag
,
Berlin
, Chap. 44.
42.
Khalil
,
W.
, and
Rongère
,
F.
,
2014
, “
Dynamic Modeling of Floating Systems: Application to Eel-Like Robot and Rowing System
,” 13th IEEE International Workshop on Advanced Motion Control (
AMC
), Yokohama, Japan, Mar. 14–16, pp.
12
14
.
43.
McIsaac
,
K. A.
, and
Ostrowski
,
J. P.
,
1999
, “
A Geometric Approach to Anguilliform Locomotion Modelling of an Underwater Eel Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, pp.
2843
2848
.
44.
Ostrowski
,
J. P.
, and
Burdick
,
J. W.
,
1998
, “
The Geometric Mechanics of Undulatory Robotics Locomotion
,”
Int. J. Rob. Res.
,
17
(
7
), pp.
683
701
.
45.
Chevallereau
,
C.
,
Bessonnet
,
G.
,
Abba
,
G.
, and
Aoustin
,
Y.
,
2009
,
Bipedal Robots
(
CAM Control Systems
,
Robotics and Manufacturing Series
),
ISTE
London
.
46.
Mukherjee
,
R.
, and
Nukamura
,
Y.
,
1992
, “
Formulation and Efficient Computation of Inverse Dynamics of Space Robots
,”
IEEE Trans. Rob. Autom.
,
8
(
3
), pp.
400
406
.
47.
Jain
,
A.
, and
Rodriguez
,
G.
,
1995
, “
Base-Invariant Symmetric Dynamics of Free-Flying Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
4
), pp.
585
597
.
48.
Khalil
,
W.
,
2010
, “
Dynamic Modeling of Robots Using Newton-Euler Formulation
,”
Informatics in Control, Automation and Robotics
(Lecture Notes in Electrical Engineering), Vol.
89
,
J. A.
Cetto
,
J.-L.
Ferrier
, and
J.
Filipe
,
eds
.,
Springer
,
Berlin
, pp.
3
20
.
49.
Boyer
,
F.
,
Porez
,
M.
, and
Khalil
,
W.
,
2006
, “
Macro-Continuous Torque Algorithm for a Three-Dimensional Eel-Like Robot
,”
IEEE Rob. Trans.
,
22
(
4
), pp.
763
775
.
50.
Boyer
,
F.
,
Shaukat
,
A.
, and
Porez
,
M.
,
2012
, “
Macrocontinuous Dynamics for Hyperredundant Robots: Application to Kinematic Locomotion Bioinspired by Elongated Body Animals
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
303
317
.
51.
Boyer
,
F.
, and
Porez
,
M.
,
2015
, “
Multibody System Dynamics for Bio-Inspired Locomotion: From Geometric Structures to Computational Aspects
,”
Bioinspiration Biomimetics
,
10
(
2
), p.
025007
.
52.
Khalil
,
W.
,
Vijayalingam
,
A.
,
Khomutenko
,
B.
,
Mukhanov
,
I.
,
Lemoine
,
P.
, and
Ecorchard
,
G.
,
2014
, “
OpenSYMORO: An Open-Source Software Package for Symbolic Modelling of Robots
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Besancon, France, July, pp.
1206
1211
.
53.
De Luca
,
A.
, and
Siciliano
,
B.
,
1991
, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
IEEE Trans. Syst., Man Cybern.
,
21
(
4
), pp.
826
839
.
54.
Damaren
,
C.
, and
Sharf
,
I.
,
1995
, “
Simulation of Flexible-Link Manipulators With Inertial and Geometric Nonlinearities
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
1
), pp.
74
87
.
55.
Porez
,
M.
,
Boyer
,
F.
, and
Belkhiri
,
A.
,
2014
, “
A Hybrid Dynamic Model for Bio-Inspired Soft Robots: Application to a Flapping-Wing Micro Air Vehicle
,”
International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
3556
3563
.
56.
Boyer
,
F.
, and
Coiffet
,
P.
,
1996
, “
Generalization of Newton-Euler Model for Flexible Manipulators
,”
J. Rob. Syst.
,
13
(
1
), pp.
11
24
.
57.
Boyer
,
F.
,
Glandais
,
N.
, and
Khalil
,
W.
,
2002
, “
Flexible Multibody Dynamics Based on a Non-Linear Euler-Bernoulli Kinematics
,”
Int. J. Numer. Methods Eng.
,
54
(
1
), pp.
27
59
.
58.
Sane
,
S. P.
, and
Dickinson
,
M. H.
,
2002
, “
The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight
,”
J. Exp. Biol.
,
205
, pp.
1087
1096
.
59.
McMichael
,
J. M.
, and
Francis
,
M. S.
,
1997
, “
Micro Air Vehicles–Toward a New Dimension in Flight
,” DARPA Tactical Technology Office, Arlington, VA, http://www.uadrones.net/military/research/1997/0807.htm
60.
Boyer
,
F.
,
Porez
,
M.
,
Ferhat
,
M.
, and
Morel
,
Y.
,
2016
, “
Locomotion Dynamics for Bio-Inspired Robots With Soft Appendages: Application to Flapping Flight and Passive Swimming
,”
J. Nonlinear Sci.
, (epub).
61.
Khalil
,
W.
,
Gallot
,
G.
, and
Boyer
,
F.
,
2007
, “
Dynamic Modeling and Simulation of a 3-D Serial Eel-Like Robot
,”
IEEE Trans. Syst., Man Cybern., Part C
,
37
(
6
), pp.
1259
1268
.
62.
Porez
,
M.
,
Boyer
,
F.
, and
Ijspeert
,
A. J.
,
2014
, “
Improved Lighthill Fish Swimming Model for Bio-Inspired Robots: Modeling, Computational Aspects and Experimental Comparisons
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1322
1341
.
You do not currently have access to this content.