A wide range of engineering applications, ranging from civil to space structures, could benefit from the ability to construct material-efficient lattices that are easily reconfigurable. The challenge preventing modular robots from being applied at large scales is mainly the high level of complexity involved in duplicating a large number of highly integrated module units. We believe that reconfigurability can be more effectively achieved at larger scales by separating the structural design from the rest of the functional components. To this end, we propose a modular chainlike structure of links and connector nodes that can be used to fold a wide range of two-dimensional (2D) or three-dimensional (3D) structural lattices that can be easily disassembled and reconfigured when desired. The node geometry consists of a diamondlike shape that is one-twelfth of a rhombic dodecahedron, with magnets embedded on the faces to allow a forceful and self-aligning connection with neighboring links. After describing the concept and design, we demonstrate a prototype consisting of 350 links and experimentally show that objects with different shapes can be successfully approximated by our proposed chain design.

References

References
1.
Neubert
,
J.
,
Rost
,
A.
, and
Lipson
,
H.
,
2014
, “
Self-Soldering Connectors for Modular Robots
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1344
1357
.
2.
Rubenstein
,
M.
,
Cornejo
,
A.
, and
Nagpal
,
R.
,
2014
, “
Programmable Self-Assembly in a Thousand-Robot Swarm
,”
Science
,
345
(
6198
), pp.
795
799
.
3.
Becker
,
A.
,
Habibi
,
G.
,
Werfel
,
J.
,
Rubenstein
,
M.
, and
McLurkin
,
J.
,
2013
, “
Massive Uniform Manipulation: Controlling Large Populations of Simple Robots With a Common Input Signal
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–8, Tokyo, pp.
520
527
.
4.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
.
5.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Fifth International Meeting of Origami Science
, Mathematics, and Education (
Origami 5
), Singapore, July 14–15, pp. 293–305.
6.
Mueller
,
S.
,
Im
,
S.
,
Gurevich
,
S.
,
Teibrich
,
A.
,
Pfisterer
,
L.
,
Guimbretière
,
F.
, and
Baudisch
,
P.
,
2014
, “
WirePrint: 3D Printed Previews for Fast Prototyping
,”
27th Annual ACM Symposium on User Interface Software and Technology
(
UIST
), Honolulu, HI, Oct. 5–8.
7.
Goldstein
,
S. C.
,
Campbell
,
J. D.
, and
Mowry
,
T. C.
,
2005
, “
Invisible Computing: Programmable Matter
,”
Computer
,
38
(
6
), pp.
99
101
.
8.
Kodama
,
S.
,
2008
, “
Dynamic Ferrofluid Sculpture: Organic Shape-Changing Art Forms
,”
Commun. ACM
,
51
(
6
), pp.
79
81
.
9.
Wakita
,
A.
,
Nakano
,
A.
, and
Kobayashi
,
N.
,
2011
, “
Programmable Blobs: A Rheologic Interface for Organic Shape Design
,”
Fifth International Conference on Tangible
, Embedded, and Embodied Interaction (
TEI
), Funchal, Portugal, Jan. 22–26, pp. 273–276.
10.
Cheung
,
K. C.
, and
Gershenfeld
,
N.
,
2013
, “
Reversibly Assembled Cellular Composite Materials
,”
Science
,
341
(
6151
), pp.
1219
1221
.
11.
Groß
,
R.
, and
Dorigo
,
M.
,
2008
, “
Self-Assembly at the Macroscopic Scale
,”
Proc. IEEE
,
96
(
9
), pp.
1490
1508
.
12.
Fuller
,
R. B.
,
1961
, “
Octet Truss
,” U.S. Patent No. 2,986,241.
13.
Conway
,
J. H.
,
Jiao
,
Y.
, and
Torquato
,
S.
,
2011
, “
New Family of Tilings of Three-Dimensional Euclidean Space by Tetrahedra and Octahedra
,”
Proc. Natl. Acad. Sci.
,
108
(
27
), pp.
11009
11012
.
14.
Li
,
Z.
,
Balkcom
,
D. J.
, and
Dollar
,
A. M.
,
2013
, “
Rigid 2D Space-Filling Folds of Unbroken Linear Chains
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
551
557
.
15.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
16.
Griffith
,
S. T.
,
2004
, “
Growing Machines
,”
Ph.D. dissertation
, Massachusetts Institute of Technology, Cambridge, MA.
17.
Pevzner
,
P. A.
,
Tang
,
H.
, and
Waterman
,
M. S.
,
2001
, “
An Eulerian Path Approach to DNA Fragment Assembly
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
(
17
), pp.
9748
9753
.
18.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.
19.
Overvelde
,
J. T. B.
,
de Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
.
20.
Nigl
,
F.
,
Li
,
S.
,
Blum
,
J. E.
, and
Lipson
,
H.
,
2013
, “
Structure-Reconfiguring Robots: Autonomous Truss Reconfiguration and Manipulation
,”
IEEE Rob. Autom. Mag.
,
20
(
3
), pp.
60
71
.
21.
Gershenfeld
,
N.
,
Carney
,
M.
,
Jenett
,
B.
,
Calisch
,
S.
, and
Wilson
,
S.
,
2015
, “
Macrofabrication With Digital Materials: Robotic Assembly
,”
Archit. Des.
,
85
(
5
), pp.
122
127
.
22.
Cheung
,
K. C.
,
Demaine
,
E. D.
,
Bachrach
,
J. R.
, and
Griffith
,
S.
,
2011
, “
Programmable Assembly With Universally Foldable Strings (Moteins)
,”
IEEE Trans. Rob.
,
27
(
4
), pp.
718
729
.
23.
Sproewitz
,
A.
,
Asadpour
,
M.
,
Bourquin
,
Y.
, and
Ijspeert
,
A. J.
,
2008
, “
An Active Connection Mechanism for Modular Self-Reconfigurable Robotic Systems Based on Physical Latching
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
3508
3513
.
24.
Eckenstein
,
N.
, and
Yim
,
M.
,
2014
, “
Design, Principles, and Testing of a Latching Modular Robot Connector
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept 14–18, pp.
2846
2851
.
25.
Swensen
,
J. P.
,
Nawroj
,
A. I.
,
Pounds
,
P. E. I.
, and
Dollar
,
A. M.
,
2014
, “
Simple, Scalable Active Cells for Articulated Robot Structures
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
1241
1246
.
26.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
27.
Dong
,
L.
,
Deshpande
,
V.
, and
Wadley
,
H.
,
2015
, “
Mechanical Response of Ti–6Al–4V Octet-Truss Lattice Structures
,”
Int. J. Solids Struct.
,
60
, pp.
107
124
.
You do not currently have access to this content.