Oscillatory behavior is important for tasks, such as walking and running. We are developing methods for wearable robotics to add energy to enhance or vary the oscillatory behavior based on the system's phase angle. We define a nonlinear oscillator using a forcing function based on the sine and cosine of the system's phase angle that can modulate the amplitude and frequency of oscillation. This method is based on the state of the system and does not use off-line trajectory planning. The behavior of a limit cycle is shown using the Poincaré–Bendixson criterion. Linear and rotational models are simulated using our phase controller. The method is implemented and tested to control a pendulum.

References

References
1.
Revzen
,
S.
, and
Guckenheimer
,
J. M.
,
2008
, “
Estimating the Phase of Synchronized Oscillators
,”
Phys. Rev.
,
78
(
5
), p.
051907
.
2.
Tilton
,
A. K.
,
Hsiao-Wecksler
,
E. T.
, and
Mehta
,
P. G.
,
2012
, “
Filtering With Rhythms: Application to Estimation of Gait Cycle
,”
American Control Conference
(
ACC
), Montréal, Canada, June 27–29, pp. 3433–3438.
3.
Kerestes
,
J.
,
Sugar
,
T. G.
,
Flaven
,
T.
, and
Holgate
,
M.
,
2014
, “
A Method to Add Energy to Running Gait: PogoSuit
,”
ASME
Paper No. DETC2014-34406.
4.
Kerestes
,
J.
,
Sugar
,
T. G.
, and
Holgate
,
M.
,
2014
, “
Adding and Subtracting Energy to Body Motion: Phase Oscillator
,”
ASME
Paper No. DETC2014-34405.
5.
Sugar
,
T. G.
,
Bates
,
A.
,
Holgate
,
M.
,
Kerestes
,
J.
,
Mignolet
,
M.
,
New
,
P.
,
Ramachandran
,
R. K.
,
Redkar
,
S.
, and
Wheeler
,
C.
,
2015
, “
Limit Cycles to Enhance Human Performance Based on Phase Oscillators
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011001
.
6.
New
,
P.
,
Wheeler
,
C.
, and
Sugar
,
T. G.
,
2014
, “
Robotic Hopper Using Phase Oscillator Controller
,”
ASME
Paper No. DETC2014-34188.
7.
Ronsse
,
R.
,
Vitiello
,
N.
,
Lenzi
,
T.
,
van den Kieboom
,
J.
,
Chiara Carrozza
,
M.
, and
Jan Ijspeert
,
A.
,
2010
, “
Adaptive Oscillators With Human-in-the-Loop: Proof of Concept for Assistance and Rehabilitation
,”
3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Tokyo, Japan, Sept. 26–29, pp. 668–674.
8.
Rinderknecht
,
M. D.
,
Delaloye
,
F. A.
,
Crespi
,
A.
,
Ronsse
,
R.
, and
Jan Ijspeert
,
A.
,
2011
, “
Assistance Using Adaptive Oscillators: Robustness to Errors in the Identification of the Limb Parameters
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Zurich, Switzerland, June 29–July 1.
9.
Righetti
,
L.
,
Buchli
,
J.
, and
Jan Ijspeert
,
A.
,
2009
, “
Adaptive Frequency Oscillators and Applications
,”
Open Cybern. Syst. J.
,
3
(
1
), pp.
64
69
.
10.
Righetti
,
L.
,
Buchli
,
J.
, and
Ijspeert
,
A. J.
,
2006
, “
Dynamic Hebbian Learning in Adaptive Frequency Oscillators
,”
Physica D.: Nonlinear Phenomena
,
216
(
2
), pp.
269
281
.
11.
Seo
,
K.
,
Hyung
,
S. Y.
,
Choi
,
B. K.
,
Lee
,
Y.
, and
Shim
,
Y.
,
2015
, “
A New Adaptive Frequency Oscillator for Gait Assistance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp. 5565–5571.
12.
Rouse
,
E. J.
,
Gregg
,
R. D.
,
Hargrove
,
L. J.
, and
Sensinger
,
J. W.
,
2013
, “
The Difference Between Stiffness and Quasi-Stiffness in the Context of Biomechanical Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
562
568
.
13.
Asano
,
F.
,
Yamakita
,
M.
,
Kamamichi
,
N.
, and
Luo
,
Z. W.
,
2004
, “
A Novel Gait Generation for Biped Walking Robots Based on Mechanical Energy Constraint
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
565
573
.
14.
Gregg
,
R. D.
, and
Sensinger
,
J. W.
,
2014
, “
Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
246
254
.
15.
Gregg
,
R. D.
,
Lenzi
,
T.
,
Fey
,
N. P.
,
Hargrove
,
L. J.
, and
Sensinger
,
J. W.
,
2013
, “
Experimental Effective Shape Control of a Powered Transfemoral Prosthesis
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26, pp. 1–7.
16.
Linkens
,
D. A.
,
1977
, “
The Stability of Entrainment Conditions for RLC Coupled Van der Pol Oscillators Used as a Model for Intestinal Electrical Rhythms
,”
Bull. Math. Biol.
,
39
(
3
), pp.
359
372
.
17.
Matsuoka
,
K.
,
1987
, “
Mechanisms of Frequency and Pattern Control in the Neural Rhythm Generators
,”
Biol. Cybern.
,
56
(
5–6
), pp.
345
353
.
18.
Kuramoto
,
Y.
,
1975
,
Self-Entrainment of a Population of Coupled Non-Linear Oscillators
(Lecture Notes in Physics),
Springer
, Berlin, pp.
420
422
.
19.
De la Fuente Valadez
,
J. O.
,
2016
, “
Nonlinear Phase Based Control to Generate and Assist Oscillatory Motion With Wearable Robotics
,”
Ph.D. dissertation
, Arizona State University, Mesa, AZ.
20.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.