This paper presents a general method to perform simultaneous topological and dimensional synthesis for planar rigid-body morphing mechanisms. The synthesis is framed as a multi-objective optimization problem for which the first objective is to minimize the error in matching the desired shapes. The second objective is typically to minimize the actuating force/moment required to move the mechanism, but different applications may require a different choice. All the possible topologies are enumerated for morphing mechanism designs with a specified number of degrees of freedom (DOF), and infeasible topologies are removed from the search space. A multi-objective genetic algorithm (GA) is then used to simultaneously handle the discrete nature of the topological optimization and the continuous nature of the dimensional optimization. In this way, candidate solutions from any of the feasible topologies enumerated can be evaluated and compared. Ultimately, the method yields a sizable population of viable solutions, often of different topologies, so that the designer can manage engineering tradeoffs in selecting the best mechanism. Three examples illustrate the strengths of this method. The first examines the advantages gained by considering and optimizing across all the topologies simultaneously. The second and third demonstrate the method's versatility by incorporating prismatic joints into the morphing chain to allow for morphing between shapes that have significant changes in both shape and arc length.

References

1.
Yoon
,
H.-S.
, and
Washington
,
G.
,
2010
, “
An Optimal Method of Shape Control for Deformable Structures With an Application to a Mechanically Reconfigurable Reflector Antenna
,”
Smart Mater. Struct.
,
19
(
10
), p. 105004.
2.
Lu
,
K.
, and
Kota
,
S.
,
2003
, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
,
14
(
6
), pp.
379
391
.
3.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2011
, “
A Shape Adaptive Airfoil for a Wind Turbine Blade
,”
Proc. SPIE
,
7979
, p. 79790H.
4.
Maheri
,
A.
,
Noroozi
,
S.
, and
Vinney
,
J.
,
2007
, “
Application of Combined Analytical/FEA Coupled Aero-Structure Simulation in Design of Wind Turbine Adaptive Blades
,”
Renewable Energy
,
32
(
12
), pp.
2011
2018
.
5.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Design of Planar, Shape-Changing Rigid-Body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p. 041007.
6.
Wiggins
,
L. D.
,
Stubbs
,
M. D.
,
Johnston
,
C. O.
,
Robertshaw
,
H. H.
,
Reinholtz
,
C. F.
, and
Inman
,
D. J.
,
2004
, “
A Design and Analysis of a Morphing Hyper-Elliptic Cambered Span (HECS) Wing
,”
AIAA
Paper No. 2004-1885.
7.
Kota
,
S.
,
Hetrick
,
J.
,
Osborn
,
R.
,
Paul
,
D.
,
Pendleton
,
E.
,
Flick
,
P.
, and
Tilmann
,
C.
,
2003
, “
Design and Application of Compliant Mechanisms for Morphing Aircraft Structures
,”
Proc. SPIE
,
5054
, pp.
24
33
.
8.
Neal
,
D. A.
,
Good
,
M. G.
,
Johnston
,
C. O.
,
Robertshaw
,
H. H.
,
Mason
,
W. H.
, and
Inman
,
D. J.
,
2004
, “
Design and Wind-Tunnel Analysis of a Fully Adaptive Aircraft Configuration
,”
AIAA
Paper No. 2004-1727.
9.
Trease
,
B.
, and
Kota
,
S.
,
2009
, “
Design of Adaptive and Controllable Compliant Systems With Embedded Actuators and Sensors
,”
ASME J. Mech. Des.
,
131
(
11
), p. 111001.
10.
Vos
,
R.
,
Gurdal
,
Z.
, and
Abdalla
,
M.
,
2010
, “
Mechanism for Warp-Controlled Twist of a Morphing Wing
,”
J. Aircr.
,
47
(
2
), pp.
450
457
.
11.
Frank
,
G. J.
,
Joo
,
J. J.
,
Sanders
,
B.
,
Garner
,
D. M.
, and
Murray
,
A. P.
,
2008
, “
Mechanization of a High Aspect Ratio Wing for Aerodynamic Control
,”
J. Intell. Mater. Syst. Struct.
,
19
(
9
), pp.
1101
1112
.
12.
Calkins
,
F. T.
, and
Mabe
,
J. H.
,
2010
, “
Shape Memory Alloy Based Morphing Aerostructures
,”
ASME J. Mech. Des.
,
132
(
11
), p. 111012.
13.
Inoyama
,
D.
,
Sanders
,
B. P.
, and
Joo
,
J. J.
,
2008
, “
Topology Optimization Approach for the Determination of the Multiple-Configuration Morphing Wing Structure
,”
J. Aircr.
,
45
(
6
), pp.
1853
1863
.
14.
Muhammad
,
A.
,
Nguyen
,
Q. V.
,
Park
,
H. C.
,
Hwang
,
D. Y.
,
Byun
,
D.
, and
Goo
,
N. S.
,
2010
, “
Improvement of Artificial Foldable Wing Models by Mimicking the Unfolding/Folding Mechanism of a Beetle Hind Wing
,”
J. Bionic Eng.
,
7
(
2
), pp.
134
141
.
15.
Daynes
,
S.
,
Weaver
,
P. M.
, and
Trevarthen
,
J. A.
,
2011
, “
A Morphing Composite Air Inlet With Multiple Stable Shapes
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
961
973
.
16.
Miles
,
R.
,
Howard
,
P.
,
Limbach
,
C.
,
Zaidi
,
S.
,
Lucato
,
S.
,
Cox
,
B.
,
Marshall
,
D.
,
Espinosa
,
A. M.
, and
Driemeyer
,
D.
,
2011
, “
A Shape-Morphing Ceramic Composite for Variable Geometry Scramjet Inlets
,”
J. Am. Ceram. Soc.
,
94
(
s1
), pp.
s35
s41
.
17.
Dürr
,
J. K.
,
Honke
,
R.
,
Alberti
,
M. V.
, and
Sippel
,
R.
,
2003
, “
Development and Manufacture of an Adaptive Lightweight Mirror for Space Application
,”
Smart Mater. Struct.
,
12
(
6
), pp.
1005
1016
.
18.
Rodrigues
,
G.
,
Bastaits
,
R.
,
Roose
,
S.
,
Stockman
,
Y.
,
Gebhardt
,
S.
,
Schoenecker
,
A.
,
Villon
,
P.
, and
Preumont
,
A.
,
2009
, “
Modular Bimorph Mirrors for Adaptive Optics
,”
Opt. Eng.
,
48
(
3
), p. 034001.
19.
Funke
,
L. W.
,
Schmiedeler
,
J. P.
, and
Zhao
,
K.
,
2015
, “
Design of Planar Multi-Degree-of-Freedom Morphing Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p. 011007.
20.
Funke
,
L.
, and
Schmiedeler
,
J. P.
,
2015
, “
Design of Multi-Degree-of-Freedom Planar Morphing Mechanisms With Single-Degree-of-Freedom Sub-Chains
,”
ASME
Paper No. DETC2015-47277.
21.
Giaier
,
K. S.
,
Myszka
,
D. H.
,
Kramer
,
W. P.
, and
Murray
,
A. P.
,
2014
, “
Variable Geometry Dies for Polymer Extrusion
,”
ASME
Paper No. IMECE2014-38409.
22.
Lu
,
K.-J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
23.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanisms
,”
Int. J. Numer. Methods Eng.
,
98
(
4
), pp.
265
286
.
24.
Yoon
,
G. H.
, and
Heo
,
J. C.
,
2012
, “
Constraint Force Design Method for Topology Optimization of Planar Rigid-Body Mechanisms
,”
Comput. Aided Des.
,
44
(
12
), pp.
1277
1296
.
25.
Heo
,
J. C.
, and
Yoon
,
G. H.
,
2013
, “
Size and Configuration Syntheses of Rigid-Link Mechanisms With Multiple Rotary Actuators Using the Constraint Force Design Method
,”
Mech. Mach. Theory
,
64
, pp.
18
38
.
26.
Zhao
,
K.
, and
Schmiedeler
,
J. P.
,
2015
, “
Using Rigid-Body Mechanism Topologies to Design Shape-Changing Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
1
), p. 011014.
27.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p. 021011.
28.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2013
, “
Topological and Dimensional Synthesis of Planar Linkages for Multiple Kinematic Tasks
,”
Multibody Syst. Dyn.
,
29
(
2
), pp.
189
211
.
29.
Murray
,
A. P.
,
Schmiedeler
,
J. P.
, and
Korte
,
B. M.
,
2008
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p. 032302.
30.
Persinger
,
J. A.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2009
, “
Synthesis of Planar Rigid-Body Mechanisms Approximating Shape Changes Defined by Closed Curves
,”
ASME J. Mech. Des.
,
131
(
7
), p. 071006.
31.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2011
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms With Prismatic Joints
,”
ASME
Paper No. DETC2011-48503.
32.
Shamsudin
,
S. A.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Schmiedeler
,
J. P.
,
2013
, “
Kinematic Synthesis of Planar, Shape-Changing, Rigid Body Mechanisms for Design Profiles With Significant Differences in Arc Length
,”
Mech. Mach. Theory
,
70
, pp.
425
440
.
33.
Li
,
B.
,
Murray
,
A. P.
, and
Myszka
,
D. H.
,
2015
, “
Designing Variable-Geometry Extrusion Dies That Utilize Planar Shape-Changing Rigid-Body Mechanisms
,”
ASME
Paper No. DETC2015-46670.
You do not currently have access to this content.