In this paper, a new design is presented for shape morphing using parameterized curves. Inspired by minimal actuation effort, a multiloop linkage is designed with a single input, allowing a morphing curve to take on three distinct shapes. The underlying design is based on a network of four-bar linkages connected together to form a multiloop linkage, referred to as the curve adaptive linkage array (CALA). A three-step method is developed and presented here to find the geometric dimensions of the CALA. The proposed solution is based on the simultaneous recursive solving of the traditional single-loop dyad equations for multiple loops. The key in obtaining a feasible solution is through parameterization of the curves that the linkage is required to morph. To show the effectiveness of the method, an airfoil morphing application is presented, solved using the proposed method, and validated by a prototype. The presented synthesis method provides an effective means for designing a multiloop linkage with a single input.

References

References
1.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Controlling the Movement of a TRR Spatial Chain With Coupled Six-Bar Function Generators for Biomimetic Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051005
.
2.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Design of Planar, Shape-Changing Rigid-Body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041007
.
3.
Pankonien
,
A. M.
,
Gamble
,
L. L.
,
Faria
,
C. T.
, and
Inman
,
D. J.
,
2016
, “
Synergistic Smart Morphing Aileron: Capabilities Identification
,” AIAA Paper No. 2016-1570.
4.
Wenjun
,
D.
, and
Qinb
,
S.
,
2011
, “
Airfoil Design and Numerical Analysis for Morphing Wing Structure
,”
Adv. Mater. Res
,
228/229
, pp.
169
173
.
5.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2015
, “
Analysis and Design of Lattice Materials for Large Cord and Curvature Variations in Skin Panels of Morphing Wings
,”
Smart Mater. Struct.
,
24
(
3
), pp.
037006-1
037006-11
.
6.
Airoldi
,
A.
,
Bettini
,
P.
,
Panichelli
,
P.
,
Oktem
,
M. F.
, and
Sala
,
G.
,
2015
, “
Chiral Topologies for Composite Morphing Structures—Part I: Development of a Chiral Rib for Deformable Airfoils
,”
Phys. Status Solidi B
,
252
(
7
), pp.
1435
1445
.
7.
Heo
,
H.
,
Ju
,
J.
, and
Kim
,
D.-M.
,
2013
, “
Compliant Cellular Structures: Application to a Passive Morphing Airfoil
,”
Compos. Struct.
,
106
, pp.
560
569
.
8.
Bettini
,
P.
,
Airoldi
,
A.
,
Sala
,
G.
,
Landro
,
L. D.
,
Ruzzene
,
M.
, and
Spadoni
,
A.
,
2010
, “
Composite Chiral Structures for Morphing Airfoils: Numerical Analyses and Development of a Manufacturing Process
,”
Composites, Part B
,
41
(
2
), pp.
133
147
.
9.
Yokozeki
,
T.
,
Sugiura
,
A.
, and
Hirano
,
Y.
,
2014
, “
Development of Variable Camber Morphing Airfoil Using Corrugated Structure
,”
AIAA J. Aircr.
,
51
(
3
), pp.
1023
1029
.
10.
Campanile
,
L. F.
, and
Sachau
,
D.
,
2000
, “
The Belt-Rib Concept: A Structronic Approach to Variable Camber
,”
J. Intell. Mater. Syst. Struct.
,
11
(
3
), pp.
215
224
.
11.
Austin
,
F.
,
Rossi
,
M. J.
,
Nostrand
,
W. V.
, and
Knowles
,
G.
,
1994
, “
Static Shape Control for Adaptive Wings
,”
AIAA J.
,
32
(
9
), pp.
1895
1901
.
12.
Mamou
,
M.
,
Mébarki
,
Y.
,
Khalid
,
M.
,
Genest
,
M.
,
Coutu
,
D.
,
Popov
,
A.
,
Sainmont
,
C.
,
Georges
,
T.
,
Grigorie
,
L.
,
Botez
,
R.
,
Brailovski
,
V.
,
Terriault
,
P.
,
Paraschivoiu
,
I.
, and
Laurendeau
,
E.
,
2010
, “
Aerodynamic Performance Optimization of a Wind Tunnel Morphing Wing Model Subject to Various Cruise Flow Conditions
,”
27th International Congress of the Aeronautical Sciences
(
ICAS
), Nice, France, Sept. 19–24, Paper No. 2010-3.2.4.
13.
Trease
,
B. P.
,
Lu
,
K.-J.
, and
Kota
,
S.
,
2003
, “
Biomimetic Compliant System for Smart Actuator-Driven Aquatic Propulsion: Preliminary Results
,”
ASME
Paper No. IMECE2003-41446.
14.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
,
4th ed.
, Vol.
1
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.