A fixed-guided beam, with one end is fixed while the other is guided in that the angle of that end does not change, is one of the most commonly used flexible segments in compliant mechanisms such as bistable mechanisms, compliant parallelogram mechanisms, compound compliant parallelogram mechanisms, and thermomechanical in-plane microactuators. In this paper, we split a fixed-guided beam into two elements, formulate each element using the beam constraint model (BCM) equations, and then assemble the two elements' equations to obtain the final solution for the load–deflection relations. Interestingly, the resulting load–deflection solution (referred to as Bi-BCM) is closed-form, in which the tip loads are expressed as functions of the tip deflections. The maximum allowable axial force of Bi-BCM is the quadruple of that of BCM. Bi-BCM also extends the capability of BCM for predicting the second mode bending of fixed-guided beams. Besides, the boundary line between the first and the second modes bending of fixed-guided beams can be easily obtained using a closed-form equation. Bi-BCM can be immediately used for quick design calculations of compliant mechanisms utilizing fixed-guided beams as their flexible segments (generally no iteration is required). Different examples are analyzed to illustrate the usage of Bi-BCM, and the results show the effectiveness of the closed-form solution.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
.
3.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
4.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.
5.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R.
, and
Culpepper
,
M. L.
,
2010
, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
.
6.
Hao
,
G.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Can. Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
7.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041016
.
8.
Lott
,
C. D.
,
McLain
,
T. W.
, and
Harb
,
J. N.
, and
Howell
,
L. L.
,
2002
, “
Modeling the Thermal Behavior of a Surface-Micromachined Linear-Displacement Thermomechanical Microactuator
,”
Sens. Actuators A
,
101
(
1
), pp.
239
250
.
9.
Wittwer
,
J. W.
,
Baker
,
M. S.
, and
Howell
,
L. L.
,
2006
, “
Simulation, Measurement, and Asymmetric Buckling of Thermal Microactuators
,”
Sens. Actuators A
,
128
(
2
), pp.
395
401
.
10.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
11.
Lyon
,
S. M.
, and
Howell
,
L. L.
,
2002
, “
A Simplified Pseudo-Rigid-Body Model for Fixed-Fixed Flexible Segments
,”
ASME
Paper No. DETC2002/MECH-34203.
12.
Shoup
,
T. E.
,
1972
, “
On the Use of the Nodal Elastica for the Analysis of Flexible Link Devices
,”
J. Eng. Ind.
,
94
(
3
), pp.
871
875
.
13.
Zhao
,
J.
,
Jia
,
J.
,
He
,
X.
, and
Wang
,
H.
,
2008
, “
Post-Buckling and Snap-Through Behavior of Inclined Slender Beams
,”
ASME J. Mech. Des.
,
75
(
4
), p.
041020
.
14.
Kimball
,
C.
, and
Tsai
,
L. W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary end Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
15.
Kim
,
C.
, and
Ebenstein
,
D.
,
2011
, “
Curve Decomposition for Large Deflection Analysis of Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041009
.
16.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
17.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
18.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms–A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.
19.
Sen
,
S.
,
2013
, “
Beam Constraint Model: Generalized Nonlinear Closed-Form Modeling of Beam Flexures for Flexure Mechanism Design
,”
Ph.D dissertation
, the University of Michigan, Ann Arbor, MI.
20.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
21.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
22.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model (CBCM)
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
23.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
.
24.
William
,
M. F.
,
1996
, “
A Geometric Interpretation of the Solution of the General Quartic Polynomial
,”
Am. Math. Mon.
,
103
(
1
), pp.
51
57
.
25.
Shamshirasaz
,
M.
, and
Asgari
,
M. B.
,
2008
, “
Polysilicon Micro Beams Buckling With Temperature-Dependent Properties
,”
Microsyst. Technol.
,
14
(
7
), pp.
975
961
.
You do not currently have access to this content.