We have experimented with and simulated Steinkamp's passive-dynamic hopper. This hopper cannot stand up (it is statically unstable), yet it can hop the length of a 5 m 0.079 rad sloped ramp, with n100 hops. Because, for an unstable periodic motion, a perturbation Δx0 grows exponentially with the number of steps (ΔxnΔx0×λn), where λ is the system eigenvalue with largest magnitude, one expects that if λ>1 that the amplification after 100 steps, λ100, would be large enough to cause robot failure. So, the experiments seem to indicate that the largest eigenvalue magnitude of the linearized return map is less than one, and the hopper is dynamically stable. However, two independent simulations show more subtlety. Both simulations correctly predict the period of the basic motion, the kinematic details, and the existence of the experimentally observed period 11 solutions. However, both simulations also predict that the hopper is slightly unstable (|λ|max>1). This theoretically predicted instability superficially contradicts the experimental observation of 100 hops. Nor do the simulations suggest a stable attractor near the periodic motion. Instead, the conflict between the linearized stability analysis and the experiments seems to be resolved by the details of the launch: a simulation of the hand-holding during launch suggests that experienced launchers use the stability of the loosely held hopper to find a motion that is almost on the barely unstable limit cycle of the free device.

References

References
1.
Steinkamp
,
P.
,
2017
, “
A Statically-Unstable Passive Hopper: Design Evolution
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011012
.
2.
Coleman
,
M.
, and
Ruina
,
A.
,
1998
, “
An Uncontrolled Walking Toy That Cannot Stand Still
,”
Phys. Rev. Lett.
,
80
(
16
), pp.
3658
3661
.
3.
Kooijman
,
J.
,
Meijaard
,
J.
,
Papadopoulos
,
J. M.
,
Ruina
,
A.
, and
Schwab
,
A.
,
2011
, “
A Bicycle Can Be Self-Stable Without Gyroscopic or Caster Effects
,”
Science
,
332
(
6027
), pp.
339
342
.
4.
Hubbard
,
M.
,
1979
, “
Lateral Dynamics and Stability of the Skateboard
,”
ASME J. Appl. Mech.
,
46
(
4
), pp.
931
936
.
5.
Ruina
,
A.
,
1998
, “
Nonholonomic Stability Aspects of Piecewise Holonomic Systems
,”
Rep. Math. Phys.
,
42
(
1
), pp.
91
100
.
6.
Raibert
,
M.
, and
Tello
,
E.
,
1986
, “
Legged Robots That Balance
,”
IEEE Expert
,
1
(
4
), p.
89
.
7.
Raibert
,
M.
,
Brown
,
H.
, and
Chepponis
,
M.
,
1984
, “
Experiments in Balance With a 3d One-Legged Hopping Machine
,”
Int. J. Rob. Res.
,
3
(
2
), pp.
75
92
.
8.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.
9.
Garcia
,
M.
,
Chatterjee
,
A.
, and
Ruina
,
A.
,
2000
, “
Efficiency, Speed, and Scaling of Two-Dimensional Passive-Dynamic Walking
,”
Dyn. Stab. Syst.
,
15
(
2
), pp.
75
99
.
10.
Cham
,
J.
, and
Cutkosky
,
M.
,
2007
, “
Dynamic Stability of Open-Loop Hopping
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
3
), pp.
275
284
.
11.
Dankowicz
,
H.
, and
Piiroinen
,
P.
,
2002
, “
Exploiting Discontinuities for Stabilization of Recurrent Motions
,”
Dyn. Syst. Int. J.
,
17
(
4
), pp.
317
342
.
12.
Reddy
,
C.
, and
Pratap
,
R.
,
2000
, “
Can a Passive Hopper Hop Forever?
Curr. Sci.
,
79
(
5
), pp.
639
645
.
13.
Seth
,
B.
,
Seshu
,
P.
,
Shanmuganathan
,
P.
,
Vichare
,
V.
, and
Raj
,
P.
,
2007
, “
Search for Initial Conditions for Sustained Hopping of Passive Springy-Leg Offset-Mass Hopping Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
4
), pp.
522
526
.
14.
Owaki
,
D.
,
Koyama
,
M.
,
Yamaguchi
,
S.
,
Kubo
,
S.
, and
Ishiguro
,
A.
,
2010
, “
A Two-Dimensional Passive Dynamic Running Biped With Knees
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–8, pp.
5237
5242
.
15.
Ahmadi
,
M.
, and
Buehler
,
M.
,
1997
, “
Stable Control of a Simulated One-Legged Running Robot With Hip and Leg Compliance
,”
IEEE Trans. Rob. Autom.
,
13
(
1
), pp.
96
104
.
16.
Sayyad
,
A.
,
Seth
,
B.
, and
Issac
,
K.
,
2007
, “
Dynamics and Control of a One-Legged 2-D SLOM Hopping Robot
,”
12th IFToMM World Congress
, Besancon, France, June 18–21.
17.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. B
,
273
(
1603
), pp.
2861
2867
.
18.
Ghigliazza
,
R.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D.
,
2003
, “
A Simply Stabilized Running Model
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
2
), pp.
187
218
.
19.
Owaki
,
D.
, and
Ishiguro
,
A.
,
2007
, “
Mechanical Dynamics That Enables Stable Passive Dynamic Bipedal Running-Enhancing Self-Stability by Exploiting Nonlinearity in the Leg Elasticity
,”
J. Rob. Mechatronics
,
19
(
4
), pp.
374
380
.
20.
M'Closkey
,
R.
, and
Burdick
,
J.
,
2002
, “
An Analytical Study of Simple Hopping Robots With Vertical and Forward Motion
,”
1991 IEEE International Conference on Robotics and Automation
(
ICRA-02
), Sacramento, CA, Apr. 9–11, pp.
1392
1397
.
21.
Hyon
,
S.-H.
, and
Emura
,
T.
,
2002
, “
Quasi-Periodic Gaits of Passive One-Legged Hopper
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IRDS
), Lausanne, Switzerland,, Sept. 30–Oct. 4, Vol.
3
, IEEE, pp.
2625
2630
.
22.
Zeglin
,
G.
, and
Brown
,
B.
,
1998
, “
Control of a Bow Leg Hopping Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, Vol.
1
, pp.
793
798
.
23.
Brown
,
B.
, and
Zeglin
,
G.
,
1998
, “
The Bow Leg Hopping Robot
,”
1998 IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, Vol.
1
, pp.
781
786
.
24.
McGeer
,
T.
,
1990
, “
Passive Bipedal Running
,”
Proc. R. Soc. London, Ser. B
,
240
(
1297
), pp.
107
134
.
25.
Cotton
,
S.
,
Olaru
,
I. M. C.
,
Bellman
,
M.
,
van der Ven
,
T.
,
Godowski
,
J.
, and
Pratt
,
J.
,
2012
, “
FastRunner: A Fast, Efficient and Robust Bipedal Robot. Concept and Planar Simulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
2358
2364
.
26.
Mombaur
,
K.
,
Longman
,
R.
,
Bock
,
H.
, and
Schlöder
,
J.
,
2005
, “
Open-Loop Stable Running
,”
Robotica
,
23
(
1
), pp.
21
33
.
27.
Owaki
,
D.
,
Osuka
,
K.
, and
Ishiguro
,
A.
,
2013
, “
Stabilization Mechanism Underlying Passive Dynamic Running
,”
Adv. Rob.
,
27
(
18
), pp.
1399
1407
.
28.
Paul
,
C.
,
Dravid
,
R.
, and
Iida
,
F.
,
2002
, “
Control of Lateral Bounding for a Pendulum Driven Hopping Robot
,”
5th International Conference on Climbing and Waffling Robots
(
CLAWAR 2002
), Paris, France, Sept. 25–27, pp.
333
340
.
29.
Steinkamp
,
P.
,
2015
, “
Unpowered Walkers and Hoppers
,” Portland, OR, accessed Mar. 14, 2015, http://www.hevanet.com/psmfg/web%20site/passive.html
30.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
,
2003
, “
Swing-Leg Retraction: A Simple Control Model for Stable Running
,”
J. Exp. Biol.
,
206
(
15
), pp.
2547
2555
.
31.
Hasaneini
,
S. J.
,
Macnab
,
C. J.
,
Bertram
,
J. E.
, and
Leung
,
H.
,
2014
, “
Swing-Leg Retraction Efficiency in Bipedal Walking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, IL, Sept. 14–18, pp.
2515
2522
.
32.
Pathria
,
R. K.
,
1996
,
Statistical Mechanics
,
2nd ed.
,
Butterworth Heinemann
,
Oxford, UK
.
33.
McGeer
,
T.
, and
Palmer
,
L. H.
,
1989
, “
Wobbling, Toppling, and Forces of Contact
,”
Am. J. Phys.
,
57
(
12
), pp.
1089
1098
.
34.
Schwab
,
A. L.
,
1998
,
Multibody Dynamics B
,
Delft University of Technology
,
Delft, The Netherlands
.
35.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
281
288
.
36.
Meijaard
,
J.
,
Papadopoulos
,
J.
,
Ruina
,
A.
, and
Schwab
,
A.
,
2007
, “
Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review
,”
Proc. R. Soc. A
,
463
(
2084
), p.
1955
.
37.
Coleman
,
M. J.
,
Garcia
,
M.
,
Mombaur
,
K.
, and
Ruina
,
A.
,
2001
, “
Prediction of Stable Walking for a Toy That Cannot Stand
,”
Phys. Rev. E
,
64
(
2
), p.
022901
.
38.
Baraff
,
D.
,
1993
, “
Non-Penetrating Rigid Body Simulation
,” 14th European Association for Computer Graphics Conference (
Eurographics 93
), Barcelona, Spain, Sept. 6–10.
You do not currently have access to this content.