The subject of Bresse's circles is classical in the kinematics of planar mechanisms. These are the loci of the coupler points that exhibit either zero normal or zero tangential acceleration. Described in this paper is the construction of the spherical equivalent of Bresse's circles, which take the form of an inflexion spherical cubic and a Thales ellipse, respectively. An algorithm is developed to produce these loci for the case of the spherical antiparallelogram. As a byproduct, the corresponding polodes and their evolutes are obtained.

References

References
1.
Hirschhorn
,
J.
,
1962
,
Kinematics and Dynamics of Plane Mechanisms
,
McGraw-Hill
,
New York
.
2.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
3.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North Holland Publishing
,
Amsterdam, The Netherlands
.
4.
Di Benedetto
,
A.
, and
Pennestrì
,
E.
,
1993
,
Introduction to the Kinematics of Mechanisms
, Vol.
1–3
, Casa
Editrice Ambrosiana
,
Milan, Italy
.
5.
Chiang
,
C. H.
,
2000
,
Kinematics of Planar Mechanisms
,
Krieger Publishing Company
,
Malabar, FL
.
6.
Meyer zur Capellen
,
W.
, and
Dittrich
,
G.
,
1966
, “
Note on the Determination of Accelerations in Plane Kinematics
,”
J. Mech
,
1
(
3
), pp.
315
319
.
7.
Gilmore
,
B. J.
, and
Cipra
,
R. J.
,
1983
, “
An Analytical Method for Computing the Instant Centers, Centrodes, Inflection Circles, and Centers of Curvature of the Centrodes by Successively Grounding Each Link
,”
J. Mech., Transm., Autom.
,
105
(
3
), pp.
407
414
.
8.
Figliolini
,
G.
,
Conte
,
M.
, and
Rea
,
P.
,
2012
, “
Algebraic Algorithm for the Kinematic Analysis of Slider-Crank/Rocker Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011003
.
9.
Chiang
,
C. H.
,
2000
,
Kinematics of Spherical Mechanisms
,
Krieger Publishing Company
,
Malabar, FL
.
10.
Chiang
,
C. H.
,
1992
, “
Spherical Kinematics in Contrast to Planar Kinematics
,”
Mech. Mach. Theory
,
27
(
3
), pp.
243
250
.
11.
McCarthy
,
J. M.
, and
Ravani
,
B.
,
1986
, “
Differential Kinematics of Spherical and Spatial Motions Using Kinematic Mapping
,”
J. Appl. Mech.
,
53
(
1
), pp.
15
22
.
12.
Veldkamp
,
G. R.
,
1967
, “
An Approach to Spherical Kinematics Using Tools Suggested by Plane Kinematics
,”
J. Mech.
,
2
(
4
), pp.
437
450
.
13.
Bisshopp
,
K. E.
,
1969
, “
Note on Spherical Motion
,”
J. Mech.
,
4
(
2
), pp.
159
166
.
14.
Kamphuis
,
H. J.
,
1969
, “
Application of Spherical Instantaneous Kinematics to the Spherical Slider-Crank Mechanism
,”
J. Mech.
,
4
(
1
), pp.
43
56
.
15.
Fu
,
T.-T.
, and
Chang
,
C. H.
,
1994
, “
Simulating a Given Spherical Motion by the Polode Method
,”
Mech. Mach. Theory
,
29
(
2
), pp.
237
249
.
16.
Sodhi
,
R.
, and
Shoup
,
T. E.
,
1982
, “
Axodes for the Four-Revolute Spherical Mechanism
,”
Mech. Mach, Theory
,
17
(
3
), pp.
173
178
.
17.
Meyer zur Capellen
,
W.
, and
Dittrich
,
G.
,
1966
, “
The Instantaneous Distribution of Acceleration of a Spherically Moving System
,”
J. Mech.
,
1
(
1
), pp.
23
42
.
18.
Bottema
,
O.
,
1965
, “
Acceleration Axes in Spherical Kinematics
,”
J. Eng. Ind.
,
87
(
2
), pp.
150
153
.
19.
Bresse
,
A.
,
1853
, “
Mémoire sur un Théorème Nouveau Concernant les Mouvements Plans et l'Application de la Cinématique à la Détermination des Rayons de Courbure
,”
J. Éc. Polytech.
, Paris,
20
, pp.
89
115
.
20.
Koetsier
,
T.
,
1986
, “
From Kinematically Generated Curves to Instantaneous Invariants: Episodes in the History of Instantaneous Planar Kinematics
,”
Mech. Mach. Theory
,
21
(
6
), pp.
489
498
.
21.
Shoup
,
T. E.
,
1991
, “
Centrodes of the Slider-Crank Mechanism
,”
8th IFToMM World Congress on the Theory of Machines and Mechanisms
, Prague, Vol.
1
, pp.
59
62
.
22.
Figliolini
,
G.
,
Rea
,
P.
, and
Angeles
,
J.
,
2015
, “
The Synthesis of the Axodes of RCCC Linkages
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021011
.
23.
Figliolini
,
G.
, and
Angeles
,
J.
,
2006
, “
The Synthesis of the Pitch Surfaces of Internal and External Skew-Gears and Their Racks
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
794
802
.
24.
Figliolini
,
G.
, and
Angeles
,
J.
,
2011
, “
Synthesis of the Pitch Cones of N-Lobed Elliptical Bevel Gears
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031002
.
25.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2015
, “
The Role of the Orthogonal Helicoid in the Generation of the Tooth Flanks of Involute-Gear Pairs With Skew Axes
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011003
.
26.
Schaaf
,
J. A.
, and
Yang
,
A.-T.
,
1992
, “
Kinematic Geometry of Spherical Evolutes
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
109
116
.
27.
Dirnböck
,
H.
,
1999
, “
Absolute Polarity on the Sphere; Conics; Loxodrome, Tractrix
,”
Math. Commun.
,
4
(2), pp.
225
240
.
28.
Serret
,
P. J.
,
1860
,
Théorie Nouvelle Géométrique et Mécanique des Lignes a Double Courbure
,
Mallet-Bachelier
,
Paris
, pp.
56
59
.
29.
Garnier
,
R.
,
1949
,
Cours de Cinématique
, Tome II, Chap. VI,
Mouvement Sphérique
,
Gauthier-Villars, Paris
, pp.
86
114
.
30.
Ting
,
K.-L.
, and
Bunduwongse
,
R.
,
1991
, “
Unified Spherical Curvature Theory of Point-, Plane-, and Circle-Paths
,”
ASME J. Mech. Des.
,
113
(
2
), pp.
142
149
.
31.
Hirschhorn
,
J.
,
1989
, “
Path Curvature in Three-Dimensional Constrained Motion of a Rigid Body
,”
Mech. Mach. Theory
,
24
(
2
), pp.
73
81
.
32.
Stachel
,
H.
,
2015
, “
Strophoids, a Family of Cubic Curves With Remarkable Properties
,”
J. Ind. Des. Eng. Graph.
,
10
(ICEGD), pp.
65
72
.
33.
Özçelik
,
Z.
, and
Şaka
,
Z.
,
2010
, “
Ball and Burmester Points in Spherical Kinematics and Their Special Cases
,”
Forsch Ingenierwes
,
74
(
2
), pp.
111
122
.
34.
Pottmann
,
H.
,
1985
, “
Zur Konstruktion der Sphärischen Wendekurve
,”
Mech. Mach. Theory
,
20
(
1
), pp.
77
79
.
35.
Tipparthi
,
H.
, and
Larochelle
,
P.
,
2011
, “
Orientation Order Analysis of Spherical Four-Bar Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
044501
.
36.
Al-Widyan
,
K.
, and
Angeles
,
J.
,
2014
, “
The Synthesis of Spherical Motion Generators in the Presence of an Incomplete Set of Attitudes
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031008
.
You do not currently have access to this content.