The leg mechanism of the novel jumping robot, Salto, is designed to achieve multiple functions during the sub-200 ms time span that the leg interacts with the ground, including minimizing impulse loading, balancing angular momentum, and manipulating power output of the robot's series-elastic actuator. This is all accomplished passively with a single degree-of-freedom linkage that has a coupled, unintuitive design which was synthesized using the technique described in this paper. Power delivered through the mechanism is increased beyond the motor's limit by using variable mechanical advantage to modulate energy storage and release in a series-elastic actuator. This power modulating behavior may enable high amplitude, high frequency jumps. We aim to achieve all required behaviors with a linkage composed only of revolute joints, simplifying the robot's hardware but necessitating a complex design procedure since there are no pre-existing solutions. The synthesis procedure has two phases: (1) design exploration to initially compile linkage candidates, and (2) kinematic tuning to incorporate power modulating characteristics and ensure an impulse-limited, rotation-free jump motion. The final design is an eight-bar linkage with a stroke greater than half the robot's total height that produces a simulated maximum jump power 3.6 times greater than its motor's limit. A 0.27 m tall prototype is shown to exhibit minimal pitch rotations during meter high test jumps.

References

References
1.
Haldane
,
D. W.
,
Plecnik
,
M. M.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2016
, “
Robotic Vertical Jumping Agility Via Series-Elastic Power Modulation
,”
Sci. Rob.
, (in Press).
2.
Martin
,
Y. C.
,
1992
, “
3D Database Searching in Drug Design
,”
J. Med. Chem.
,
35
(
12
), pp.
2145
2154
.
3.
Leach
,
A. R.
,
Bradshaw
,
J.
,
Green
,
D. V.
,
Hann
,
M. M.
, and
Delany
,
J. J.
,
1999
, “
Implementation of a System for Reagent Selection and Library Enumeration, Profiling, and Design
,”
J. Chem. Inf. Comput. Sci.
,
39
(
6
), pp.
1161
1172
.
4.
Feuston
,
B. P.
,
Chakravorty
,
S. J.
,
Conway
,
J. F.
,
Culberson
,
J. C.
,
Forbes
,
J.
,
Kraker
,
B.
,
Lennon
,
P. A.
,
Lindsley
,
C.
,
McGaughey
,
G. B.
,
Mosley
,
R.
,
Sheridan
,
R. P.
,
Valenciano
,
M.
, and
Kearsley
,
S. K.
,
2005
, “
Web Enabling Technology for the Design, Enumeration, Optimization and Tracking of Compound Libraries
,”
Curr. Top. Med. Chem.
,
5
(
8
), pp.
773
783
.
5.
Welsch
,
M. E.
,
Snyder
,
S. A.
, and
Stockwell
,
B. R.
,
2010
, “
Privileged Scaffolds for Library Design and Drug Discovery
,”
Curr. Opin. Chem. Biol.
,
14
(
3
), pp.
347
361
.
6.
Du
,
H.
,
Fuh
,
R. A.
,
Li
,
J.
,
Corkan
,
A.
, and
Lindsey
,
J. S.
,
1998
, “
PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry
,”
Photochem. Photobiol.
,
68
(
2
), pp.
141
142
.
7.
Wang
,
G.
,
Li
,
X.
, and
Wang
,
Z.
,
2009
, “
APD2: The Updated Antimicrobial Peptide Database and Its Application in Peptide Design
,”
Nucleic Acids Res.
,
37
(
1
), pp.
D933
D937
.
8.
Gedye
,
D.
, and
Katz
,
R.
,
1988
, “
Browsing in Chip Design Database
,”
25th ACM/IEEE Design Automation Conference
, pp.
269
274
.
9.
Kravets
, V
. N.
, and
Kudva
,
P.
,
2004
, “
Implicit Enumeration of Structural Changes in Circuit Optimization
,”
41st Annual Design Automation Conference
(
DAC
), San Diego, CA, June 7–11, pp.
438
441
.
10.
Catalano
,
M. G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2010
, “
Mechanism Design for Variable Stiffness Actuation Based on Enumeration and Analysis of Performance
,”
2010 IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–8, pp.
3285
3291
.
11.
Kim
,
J. S.
,
Kim
,
N. P.
, and
Han
,
S. H.
,
2005
, “
Optimal Stiffness Design of Composite Laminates for a Train Carbody by an Expert System and Enumeration Method
,”
Compos. Struct.
,
68
(
2
), pp.
147
156
.
12.
de Keijzer
,
B.
,
Klos
,
T.
, and
Zhang
,
Y.
,
2010
, “
Enumeration and Exact Design of Weighted Voting Games
,”
9th International Conference on Autonomous Agents and Multiagent Systems
(
AAMAS
), Toronto, ON, Canada, May 9–14, Vol. 1, pp.
391
398
.
13.
Ma
,
X.
,
Soh
,
A. K.
, and
Wang
,
B.
,
2004
, “
A Design Database for Moulded Pulp Packaging Structure
,”
Packag. Technol. Sci.
,
17
(
4
), pp.
193
204
.
14.
Doucette
,
J.
,
He
,
D.
,
Grover
,
W. D.
, and
Yang
,
O.
,
2003
, “
Algorithmic Approaches for Efficient Enumeration of Candidate p-Cycles and Capacited p-Cycle Network Design
,”
Fourth International Workshop on Design of Reliable Communication Networks 2003
, (
DRCN
), Alberta, Canada, Oct. 19–22, pp.
212
220
.
15.
Orlowski
,
S.
,
Wessäly
,
R.
,
Pióro
,
M.
, and
Tomaszewski
,
A.
,
2010
, “
SNDlib 1.0–Survivable Network Design Library
,”
Networks
,
55
(
3
), pp.
276
286
.
16.
Page
,
G. P.
,
Edwards
,
J. W.
,
Gadbury
,
G. L.
,
Yelisetti
,
P.
,
Wang
,
J.
,
Trivedi
,
P.
, and
Allison
,
D. B.
,
2006
, “
The PowerAtlas: A Power and Sample Size Atlas for Microarray Experimental Design and Research
,”
BMC Bioinf.
,
7
(
1
), pp.
1
9
.
17.
Brown
,
H. T.
,
1871
,
Five Hundred and Seven Mechanical Movements
,
Brown, Coombs & Co.
,
New York
.
18.
Schröder
,
J.
,
1899
,
Illustrationen von Unterrichts—Modellen und Apparaten
.
Polytechnisches Arbeits-Institut
,
Darmstadt, Germany
.
19.
Voigt
,
G.
,
1907
,
Kinematische Modelle Nach Professor Reuleaux, Verzeichnis I,II
,
Gustav Voigt Mechanische Werkstatt
,
Berlin
.
20.
Hrones
,
J. A.
, and
Nelson
,
G. I.
,
1951
,
Analysis of the Four-bar Linkage
,
Massachusetts Institute of Technology/Wiley
,
Cambridge, MA/New York
.
21.
Todd
,
P.
,
Mueller
,
D.
, and
Fichter
,
E.
,
2014
,
Atlas of the Four-Bar Linkage
,
2nd ed.
,
Saltire Software
,
Tigard, OR
.
22.
Moon
,
F. C.
,
2004
, “
The Reuleaux Models: Creating an International Digital Library of Kinematics History
,”
International Symposium on History of Machines and Mechanisms
,
M.
Ceccarelli
, ed.,
Kluwer Academic Publishers
, New York, pp.
331
344
.
23.
Yan
,
H. S.
,
Huang
,
H. H.
, and
Kuo
,
C. H.
,
2007
, “
Historic Mechanism Teaching Models in Taiwan
,”
12th IFToMM World Congress on Mechanism and Machine Science
, Besancon, France, June 18–21.
24.
Henkel
,
V.
,
Brix
,
T.
, and
Falke
,
S.
,
2013
, “
The Digital Mechanism and Gear Library Supports Design Engineers in Finding Ideas for Design Solutions in the Field of Motion Systems
,”
18th International Conference
,
Mechanika
, Kaunus, Lithuania, Apr. 4–5, pp.
87
92
.
25.
Raghavan
,
M.
,
1991
, “
An Atlas of Linkages for Independent Suspensions
,” SAE Technical Paper No. 911925.
26.
Belfiore
,
N. P.
, and
Pennestrí
,
E.
,
1997
, “
An Atlas of Linkage-Type Robotic Grippers
,”
Mech. Mach. Theory
,
32
(
7
), pp.
811
833
.
27.
Yan
,
H. S.
,
1998
,
Creative Design of Mechanical Devices
,
Springer
,
Singapore
.
28.
Tsai
,
L. W.
,
2001
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
.
CRC Press
,
Boca Raton, FL
.
29.
Galletti
,
C. U.
, and
Giannotti
,
E. I.
,
1981
, “
Interactive Computer System for the Functional Design of Mechanisms
,”
Comput.-Aided Des.
,
13
(
3
), pp.
159
163
.
30.
Chu
,
J.
, and
Sun
,
J.
,
2010
, “
Numerical Atlas Method for Path Generation of Spherical Four-Bar Mechanism
,”
Mech. Mach. Theory
,
45
(
6
), pp.
867
879
.
31.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
.
32.
Chu
,
J.
, and
Sun
,
J.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041004
.
33.
Zhang
,
C.
,
Norton
,
R. L.
, and
Hammonds
,
T.
,
1984
, “
Optimization of Parameters for Specified Path Generation Using an Atlas of Coupler Curves of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
,
19
(
6
), pp.
459
466
.
34.
Coros
,
S.
,
Thomaszewski
,
B.
,
Noris
,
G.
,
Sueda
,
S.
,
Forberg
,
M.
,
Sumner
,
R. W.
,
Matusik
,
W.
, and
Bickel
,
B.
,
2013
, “
Computational Design of Mechanical Characters
,”
SIGGRAPH
Conference Proceedings
, Hong King, Nov. 19–22, Vol.
32
p.
83
.
35.
Unruh
,
V.
, and
Krishnaswami
,
P.
,
1995
, “
A Computer-Aided Design Technique for Semi-Automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
143
149
.
36.
Yu
,
H.
,
Zhao
,
Y.
, and
Xu
,
D.
,
2015
, “
A Path Synthesis Method of Planar Hinge Four-Bar Linkage
,”
J. Harbin Inst. Technol.
,
47
(
1
), pp.
40
47
.
37.
McGarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
38.
Singh
,
B.
,
Matthews
,
J.
,
Mullineux
,
G.
, and
Medland
,
A. J.
,
2008
, “
Design Catalogues for Mechanism Selection
,” International Design Conference (
DESIGN 2008
), Dubrovnik, Croatia, May 19–22, pp.
673
680
.
39.
Primrose
,
E. J.
,
Freudenstein
,
F.
, and
Roth
,
B.
,
1967
, “
Six-Bar Motion—II: The Stephenson-1 and Stephenson-2 Mechanisms
,”
Arch. Ration. Mech. Anal.
,
24
(
1
), pp.
42
72
.
40.
Fox
,
R. L.
, and
Willmert
,
K. D.
,
1967
, “
Optimum Design of Curve-Generating Linkages With Inequality Constraints
,”
Trans. ASME
,
89
(
1
), pp.
144
151
.
41.
Bagci
,
C.
, and
Burke
,
D.
,
1993
, “
Optimum Synthesis of Coupler Curve and Uniform Rotary Motion Driven Multiloop Mechanisms Generating Complex Output Motions
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
967
977
.
42.
Raibert
,
M. H.
,
Brown
,
H. B.
, Jr.
, and
Chepponis
,
M.
,
1984
, “
Experiments in Balance With a 3D one-Legged Hopping Machine
,”
Int. J. Rob. Res.
,
3
(
2
), pp.
75
92
.
43.
Chen
,
K.
,
Chen
,
D.
,
Zhang
,
Z.
, and
Wang
,
M.
,
2016
, “
Jumping Robot With Initial Body Posture Adjustment and a Self-Righting Mechanism
,”
Int. J. Adv. Rob. Syst.
,
13
(
3
), p.
127
.
44.
Nguyen
,
Q.
, and
Park
,
H. C.
,
2012
, “
Design and Demonstration of a Locust-Like Jumping Mechanism for Small-Scale Robots
,”
J. Bionic Eng.
,
9
(
3
), pp.
271
281
.
45.
Papantoniou
,
K. V.
,
1991
, “
Electromechanical Design for an Electrically Powered, Actively Balanced One Leg Planar Robot
,”
1991 IEEE/RSJ International Workshop on Intelligent Robots and Systems
, (
IROS
), Osaka, Japan, Nov. 3–5, pp.
1553
1560
.
46.
Kikuchi
,
F.
,
Ota
,
Y.
, and
Hirose
,
S.
,
2003
, “
Basic Performance Experiments for Jumping Quadruped
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Las Vegas, Oct. 27–31, pp.
3378
3383
.
47.
Lambrecht
,
B. G. A.
,
Horchler
,
A. D.
, and
Quinn
,
R. D.
,
2005
, “
A Small, Insect-Inspired Robot That Runs and Jumps
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
1240
1245
.
48.
Tae
,
W.
,
Kim
,
S.
, and
Kwak
,
Y.
,
2009
, “
Development of Jumping Mechanism for Small Reconnaissance Robot
,”
J. Korea Inst. Mil. Sci. Technol.
,
12
(
5
), pp.
563
570
.
49.
Noh
,
M.
,
Kim
,
S. W.
,
An
,
S.
,
Koh
,
J.
, and
Cho
,
K.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1007
1018
.
50.
Chen
,
D.
,
Yin
,
J.
,
Huang
,
Y.
,
Zhao
,
K.
, and
Wang
,
T.
,
2013
, “
A Hopping-Righting Mechanism Analysis and Design of the Mobile Robot
,”
J. Braz. Soc. Mech. Sci. Eng.
,
35
(
4
), pp.
469
478
.
51.
Woodward
,
M. A.
, and
Sitti
,
M.
,
2014
, “
Multimo-Bat: A Biologically Inspired Integrated Jumping-Gliding Robot
,”
Int. J. Rob. Res.
,
33
(
12
), pp.
1511
1529
.
52.
Driessen
,
J. J. M.
,
2015
, “
Machine and Behaviour co-Design of a Powerful Minimally Actuated Hopping Robot
,”
Master's thesis
, Delft University of Technology, Delft, The Netherlands.
53.
Jung
,
G.
,
Casarez
,
C. S.
,
Jung
,
S.
,
Fearing
,
R. S.
, and
Cho
,
K.
,
2016
, “
An Integrated Jumping-Crawling Robot Using Height-Adjustable Jumping Module
,”
2016 IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21 pp.
4680
4685
.
54.
Lee
,
W.
, and
Raibert
,
M.
,
1991
, “
Control of Hoof Rolling in an Articulated Leg
,”
1991 IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
1386
1391
.
55.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2009
, “
The Use of Compliant Joints and Elastic Energy Storage in Bio-Inspired Legged Robots
,”
Mech. Mach. Theory
,
44
(
3
), pp.
580
590
.
56.
Kovač
,
M.
,
2010
, “
Bioinspired Jumping Locomotion for Miniature Robotics
,”
Ph.D thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
57.
Zhang
,
J.
,
Song
,
G.
,
Li
,
Y.
,
Qiao
,
G.
,
Song
,
A.
, and
Wang
,
A.
,
2013
, “
A Bio-Inspired Jumping Robot: Modeling, Simulation, Design, and Experimental Results
,”
Mechatronics
,
23
(
8
), pp.
1123
1140
.
58.
Jun
,
B. R.
,
Kim
,
Y. J.
, and
Jung
,
S.
,
2016
, “
Design and Control of Jumping Mechanism for a Kangaroo-Inspired Robot
,”
2016 IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Singapore, June 26–29, pp.
436
440
.
59.
Tachella
,
R.
,
2016
, “
Design and Development of a Salticid Inspired Jumping Robot
,”
Master's thesis
, Oregon State University, Corvallis, OR.
60.
Li
,
F.
,
Liu
,
W.
,
Fu
,
X.
,
Bonsignori
,
G.
,
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2012
, “
Jumping Like an Insect: Design and Dynamic Optimization of a Jumping Mini Robot Based on Bio-Mimetic Inspiration
,”
Mechatronics
,
22
(
2
), pp.
167
176
.
61.
Wei
,
D.
, and
Ge
,
W.
,
2014
, “
Research on one Bio-Inspired Jumping Locomotion Robot for Search and Rescue
,”
Int. J. Adv. Rob. Syst.
,
11
(
168
), pp.
1
10
.
62.
Kenneally
,
G.
,
De
,
A.
, and
Koditschek
,
D. E.
,
2015
, “
Leg Design for Energy Management in an Electromechanical Robot
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp. 5712–5718.
63.
Fiorini
,
P.
, and
Burdick
,
J.
,
2003
, “
The Development of Hopping Capabilities for Small Robots
,”
Auton. Rob.
,
14
(
2
), pp.
239
254
.
64.
Song
,
G.
,
Yin
,
K.
,
Zhou
,
Y.
, and
Cheng
,
X.
,
2009
, “
A Surveillance Robot With Hopping Capabilities for Home Security
,”
IEEE Trans. Consum. Electron.
,
55
(
4
), pp.
2034
2039
.
65.
Zhao
,
J.
,
2015
. “
Biologically Inspired Approach for Robot Design and Control
,”
Ph.D dissertation
, Michigan State University, East Lansing, MI.
66.
Ho
,
T.
, and
Lee
,
S.
,
2015
, “
Development of a Minimally Actuated Jumping-Rolling Robot
,”
Int. J. Adv. Rob. Syst.
,
12
(45).
67.
Okada
,
M.
, and
Takeda
,
Y.
,
2012
, “
Optimal Design of Nonlinear Profile of Gear Ratio Using Non-Circular Gear for Jumping Robot
,”
IEEE
International Conference on Robotics and Automation
, St. Paul, MN, May 14–18, pp.
1958
1963
.
68.
Zeglin
,
G.
,
1991
, “
Uniroo: A One Legged Dynamic Hopping Robot
,”
B.S., thesis
, Massachusetts Institute of Technology, Cambridge, MA.
69.
Hyon
,
S. H.
, and
Mita
,
T.
,
2002
, “
Development of a Biologically Inspired Hopping Robot—“Kenken”
,”
2002 IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, D.C., May 15, pp.
3984
3991
.
70.
Oshima
,
T.
,
Momose
,
N.
,
Koyanagi
,
K.
,
Matsuno
,
T.
, and
Fujikawa
,
T.
,
2007
, “
Jumping Mechanism Imitating Vertebrate by the Mechanical Function of Bi-Articular Muscle
,”
IEEE
International Conference on Mechatronics and Automation
, Harbin, China, Aug. 5–8, pp.
1920
1925
.
71.
Igarashi
,
A.
, and
Mikami
,
S.
,
2014
, “
Frog-Like Robot With Jump and Walk Mechanism for Locomotion on Rough Terrain
,”
2014 International Conference on Control Automation Robotics & Vision
(
ICARCV
), Singapore, Dec. 10–12, pp.
1788
1791
.
72.
Zaitsev
,
V.
,
Gvirsman
,
O.
,
Hanan
,
U. B.
,
Weiss
,
A.
,
Ayali
,
A.
, and
Kosa
,
G.
,
2015
, “
A Locust-Inspired Miniature Jumping Robot
,”
Bioinspiration & Biomimetics
,
10
(
6
), p.
066012
.
73.
Koh
,
J.
,
Jung
,
S.
,
Wood
,
R. J.
, and
Cho
,
K.
,
2013
, “
A Jumping Robotic Insect Based on a Torque Reversal Catapult Mechanism
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–7, pp.
379
6–
3801
.
74.
Jung
,
S.
,
Jung
,
G.
,
Koh
,
J.
,
Lee
,
D.
, and
Cho
,
K.
,
2015
, “
Fabrication of Composite and Sheet Metal Laminated Bistable Jumping Mechanism
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021010
.
75.
Yamada
,
A.
,
Mameda
,
H.
,
Fujimoto
,
H.
, and
Mochiyama
,
H.
,
2010
, “
A Compact Jumping Robot Based on Continuous Snap-Through Buckling for Hybrid Environment
,”
13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, CLAWAR 2010, Nagoya, Japan, Aug. 31–Sept. 3, pp.
245
252
.
76.
Tsuda
,
T.
,
Mochiyama
,
H.
, and
Fujimoto
,
H.
,
2012
, “
Quick Stair-Climbing Using Snap-Through Buckling of Closed Elastica
,”
2012 International Symposium on Micro-NanoMechatronics and Human Science
(IEEE)
, Nagoya, Japan, Nov. 4–7, pp.
368
373
.
77.
Zeglin
,
G.
,
1999
, “
The Bow Leg Hopping Robot
,”
Ph.D dissertation
, Carnegie Mellon University, Pittsburgh, PA.
78.
Stoeter
,
S. A.
, and
Papanikolopoulos
,
N.
,
2006
, “
Kinematic Motion Model for Jumping Scout Robots
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
397
402
.
79.
Armour
,
R.
,
Paskins
,
K.
,
Bowyer
,
A.
,
Vincent
,
J.
, and
Megill
,
W.
,
2007
, “
Jumping Robots: A Biomimetic Solution to Locomotion Across Rough Terrain
,”
Bioinspiration & Biomimetics
,
2
(
3
), pp.
S65
S82
.
80.
Miyazaki
,
M.
, and
Hirai
,
S.
,
2008
, “
Jumping Via Robot Body Deformation—Mechanics and Mechanism for Higher Jumping
,”
11th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
,
CLAWAR 2008
, Coimbra, Portugal, Sept. 8–10, pp.
373
380
.
81.
Dubowsky
,
S.
,
Kesner
,
S.
,
Plante
,
J.
, and
Boston
,
P.
,
2008
, “
Hopping Mobility Concept for Search and Rescue Robots
,”
Ind. Rob.: Int. J.
,
35
(
3
), pp.
238
245
.
82.
Gerratt
,
A. P.
, and
Bergbreiter
,
S.
,
2013
, “
Incorporating Compliant Elastomers for Jumping Locomotion in Microrobots
,”
Smart Mater. Struct.
,
22
(
1
), p.
014010
.
83.
Zhao
,
J.
,
Yan
,
W.
,
Xi
,
N.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2014
, “
A Miniature 25 Grams Running and Jumping Robot
,”
2014 IEEE International Conference on Robotics and Automation
,
ICRA
, Hong Kong, May 31–June 7, pp.
5115
5120
.
84.
Ni
,
F.
,
Rojas
,
D.
,
Tang
,
K.
,
Cai
,
L.
, and
Asfour
,
T.
,
2015
, “
A Jumping Robot Using Soft Pneumatic Actuator
,”
2015 IEEE International Conference on Robotics and Automation
,
ICRA
, Seattle, WA, May 26–30, pp.
3154
3159
.
85.
Brill
,
A. L.
,
De
,
A.
,
Johnson
,
A. M.
, and
Koditschek
,
D. E.
,
2015
, “
Tail-Assisted Rigid and Compliant Legged Leaping
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Hamburg, Germany, Sept. 28–Oct. 2, pp.
6304
6311
.
86.
Fankhauser
,
P.
,
Hutter
,
M.
,
Gehring
,
C.
,
Bloesch
,
M.
,
Hoepflinger
,
M. A.
, and
Siegwart
,
R.
,
2013
, “
Reinforcement Learning of Single Legged Locomotion
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Nov. 3–7, pp.
188
193
.
87.
Bonsignori
,
G.
,
Stefanini
,
C.
,
Scarfogliero
,
U.
,
Mintchev
,
S.
,
Benelli
,
G.
, and
Dario
,
P.
,
2013
, “
The Green Leafhopper, Cicadella Viridis (Hemiptera, Auchenorrhyncha, Cicadellidae), Jumps With Near-Constant Acceleration
,”
J. Exp. Biol.
,
216
(
7
), pp.
1270
1279
.
88.
Aerts
,
P.
,
1998
, “
Vertical Jumping in Galago Senegalensis: the Quest for an Obligate Mechanical Power Amplifier
,”
Philos. Trans. R. Soc. London B
,
353
(
1375
), pp.
1607
1620
.
89.
Galantis
,
A.
, and
Woledge
,
R. C.
,
2003
, “
The Theoretical Limits to the Power Output of a Muscle-Tendon Complex With Inertial and Gravitational Loads
,”
Proc. R. Soc. B
,
270
(
1523
), pp.
1493
1498
.
90.
Haldane
,
D. W.
,
Plecnik
,
M.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2016
, “
A Power Modulating Leg Mechanism for Monopedal Hopping
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
, IROS, Daejeon, Korea, Oct. 9–14, pp.
4757
4767
.
91.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), pp.
26
36
.
92.
Nolle
,
H.
,
1974
, “
Linkage Coupler Curve Synthesis: A Historical Review–I. Developments up to 1875
,”
Mech. Mach. Theory
,
9
(
2
), pp.
147
168
.
93.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2016
, “
Design of Stephenson Linkages That Guide a Point Along a Specified Trajectory
,”
Mech. Mach. Theory
,
96
(
1
), pp.
38
51
.
94.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2015
, “
Computational Design of Stephenson II Six-Bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
.
95.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2016
, “
Kinematic Synthesis of Stephenson III Six-Bar Function Generators
,”
Mech. Mach. Theory
,
97
, pp.
112
126
.
96.
Dijksman
,
E. A.
,
1994
. “
True Straight-Line Linkages Having a Rectilinear Translating Bar
,”
Advances in Robot Kinematics and Computational Geometry
,
J.
Lenarčič
and
B.
Ravani
, eds.,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
411
420
.
97.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.
98.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
99.
Rollinson
,
D.
,
Ford
,
S.
,
Brown
,
B.
, and
Choset
,
H.
,
2013
, “
Design and Modeling of a Series Elastic Element for Snake Robots
,”
ASME
Paper No. DSCC2013-3875.
You do not currently have access to this content.