Redundantly actuated parallel manipulators (PMs) receive growing interest due to their reduced singularity and enlarged workspace. This paper proposes new indices for optimal design and analysis of redundantly actuated PMs by evaluating their motion/force transmissibility. First, we proposed a method to extract a multi-DOF (degrees-of-freedom) redundantly actuated PM into several subsidiary one-DOF PMs with two or more actuators by locking some actuators in an ergodic manner. Then, a new index of output transmission performance is proposed by investigating the mean value of the instantaneous power produced by the multiple actuation wrenches and one twist of the moving platform of one-DOF PMs. A local transmission index (LTI) is defined as the minimum value of the index of output and input transmission performance. A global transmission index (GTI) is then established based on the LTI. The proposed LTI and GTI are coordinate-free and have clear physical interpretation. Finally, the validity and universality of the new indices are demonstrated by optimization and analysis of redundantly actuated lower-mobility PMs with extra articulated six-DOF or limited-DOF limbs.

References

References
1.
Kim
,
J.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
423
434
.
2.
Cheng
,
H.
,
Yiu
,
Y.
, and
Li
,
Z.
,
2003
, “
Dynamics and Control of Redundantly Actuated Parallel Manipulators
,”
IEEE-ASME Trans. Mech.
,
8
(
4
), pp.
483
491
.
3.
Muller
,
A.
,
2005
, “
Internal Preload Control of Redundantly Actuated Parallel Manipulators—It's Application to Backlash Avoiding Control
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
668
677
.
4.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
40
), pp.
578
599
.
5.
Kim
,
S. H.
,
Jeon
,
D.
,
Shin
,
H. P.
,
In
,
W.
, and
Kim
,
J.
,
2009
, “
Design and Analysis of Decoupled Parallel Mechanism With Redundant Actuator
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
93
99
.
6.
Shin
,
H.
,
Lee
,
S.
,
In
,
W.
,
Jeong
,
J. I.
, and
Kim
,
J.
,
2011
, “
Kinematic Optimization of a Redundantly Actuated Parallel Mechanism for Maximizing Stiffness and Workspace Using Taguchi Method
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), pp.
607
617
.
7.
Shin
,
H.
,
Kim
,
S.
,
Jeong
,
J.
, and
Kim
,
J.
,
2012
, “
Stiffness Enhancement of a Redundantly Actuated Parallel Machine Tool by Dual Support Rims
,”
Int. J. Precis. Eng. Manuf.
,
13
(
9
), pp.
1539
1547
.
8.
Shin
,
H.
,
Lee
,
S.
,
Jeong
,
J. I.
, and
Kim
,
J.
,
2013
, “
Antagonistic Stiffness Optimization of Redundantly Actuated Parallel Manipulators in a Predefined Workspace
,”
IEEE-ASME Trans. Mech.
,
18
(
3
), pp.
1161
1169
.
9.
Jin
,
S.
,
Kim
,
J.
, and
Seo
,
T.
,
2015
, “
Optimization of a Redundantly Actuated 5R Symmetrical Parallel Mechanism Based on Structural Stiffness
,”
Robotica
,
33
(
9
), pp.
1973
1983
.
10.
Lee
,
G.
,
Sul
,
S. K.
, and
Kim
,
J.
,
2015
, “
Energy-Saving Method of Parallel Mechanism by Redundant Actuation
,”
Int. J. Precis. Eng. Manuf. Technol.
,
2
(
4
), pp.
345
351
.
11.
Wu
,
J.
,
Wang
,
J.
,
Li
,
T.
, and
Wang
,
L.
,
2007
, “
Performance Analysis and Application of a Redundantly Actuated Parallel Manipulator for Milling
,”
J. Intell. Rob. Syst.
,
50
(
2
), pp.
163
180
.
12.
Wu
,
J.
,
Wang
,
J.
, and
Li
,
T.
,
2007
, “
Dexterity and Stiffness Analysis of a Three-Degree-of-Freedom Planar Parallel Manipulator With Actuation Redundancy
,”
Proc. Inst. Mech. Eng. Part C
,
221
(
8
), pp.
961
969
.
13.
Wu
,
J.
,
Wang
,
J.
, and
Wang
,
L.
,
2008
, “
Optimal Kinematic Design and Application of a Redundantly Actuated 3DOF Planar Parallel Manipulator
,”
ASME J. Mech. Des.
,
130
(
5
), pp.
680
682
.
14.
Wu
,
J.
,
Li
,
T.
, and
Xu
,
B.
,
2013
, “
Force Optimization of Planar 2-DOF Parallel Manipulators With Actuation Redundancy Considering Deformation
,”
Proc. Inst. Mech. Eng. Part C
,
227
(
6
), pp.
1371
1377
.
15.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), pp.
1585
1606
.
16.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Zhou
,
C.
,
2015
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanisms for Ankle Rehabilitation
,”
Robotica
,
33
(
2
), pp.
366
384
.
17.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2015
, “
Multi-Objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
702
715
.
18.
Qu
,
H.
,
Fang
,
Y.
, and
Guo
,
S.
,
2015
, “
Structural Synthesis of a Class of 3-DOF Wrist Mechanisms With Redundantly-Actuated Closed-Loop Units
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
2
), pp.
276
290
.
19.
Palpacelli
,
M. C.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2012
, “
A Redundantly Actuated 2-Degrees-of-Freedom Mini Pointing Device
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
031012
.
20.
Xie
,
F.
,
Liu
,
X. J.
, and
Zhou
,
Y.
,
2014
, “
Optimization of a Redundantly Actuated Parallel Kinematic Mechanism for a 5-Degree-of-Freedom Hybrid Machine Tool
,”
Proc. Inst. Mech. Eng. Part B
,
228
(
12
), pp.
1630
1641
.
21.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2014
, “
Redundantly Actuated 3-RRR Spherical Parallel Manipulator Used as a Haptic Device: Improving Dexterity and Eliminating Singularity
,”
Robotica
,
33
(
5
), pp.
1
18
.
22.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Dong
,
G.
,
2016
, “
Optimum Design of a Novel Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes for High Kinematic and Dynamic Performance
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
631
658
.
23.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
24.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
25.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
26.
Gosselin
,
C.
,
1992
, “
The Optimum Design of Robotic Manipulators Using Dexterity Indices
,”
Rob. Auton. Syst.
,
9
(
4
), pp.
213
226
.
27.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
28.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulator
,”
International Conference on Advanced Robotics, 1991, 'robots in Unstructured Environments'
,
91 ICAR
, June 19–22, Vol. 2, pp.
1130
1135
.
29.
Kim
,
S.
, and
Ryu
,
J.
,
2003
, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
731
736
.
30.
Pond
,
G.
, and
Carretero
,
J.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
31.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
, Vol.
1
,
Cambridge University Press
Cambridge, UK
.
32.
Lin
,
C. C.
, and
Chang
,
W. T.
,
2002
, “
The Force Transmissivity Index of Planar Linkage Mechanisms
,”
Mech. Mach. Theory
,
37
(
12
), pp.
1465
1485
.
33.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
34.
McCarthy
,
J. M.
,
2011
, “
Geometric Design of Linkages
,”
Interdiscip. Appl. Math.
,
11
(
4
), p.
583
.
35.
Glazunov
,
V. A.
,
Arkaelyan
,
V.
,
Briot
,
S.
, and
Rashoyan
,
G. V.
,
2012
, “
Speed and Force Criteria for the Proximity to Singularities of Parallel Structure Manipulators
,”
J. Mach. Manuf. Reliab.
,
41
(
3
), pp.
194
199
.
36.
Marlow
,
K.
,
Isaksson
,
M.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Planar Parallel Manipulators With Closed-Loop Sub-Chains Via Screw Theory
,”
ASME J. Mech. Rob.
,
8
(
4
).
37.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
38.
Wu
,
C.
,
Liu
,
X. J.
,
Wang
,
L.
, and
Wang
,
J.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
39.
Liu
,
X. J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), pp.
61
68
.
40.
Xie
,
F.
,
Liu
,
X. J.
,
Chen
,
X.
, and
Wang
,
J.
,
2011
, “
Optimum Kinematic Design of a 3-DOF Parallel Kinematic Manipulator With Actuation Redundancy
,”
Intelligent Robotics and Applications
,
Springer Berlin
, pp.
250
259
.
41.
Xie
,
F.
,
Liu
,
X. J.
, and
Zhou
,
Y.
, “
Development and Experimental Study of a Redundant Hybrid Machine With Five-Face Milling Capability in One Setup
,”
Int. J. Precis. Eng. Manuf.
,
15
(
1
), pp.
13
21
.
42.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
43.
Li
,
Q.
, and
Herve
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1333
1343
.
44.
Hunt
,
K.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
45.
Bonev
,
I. A.
,
2002
, “
Geometric Analysis of Parallel Mechanisms
,”
Ph.D. thesis
, Laval University, Quebec, QC.
You do not currently have access to this content.