To overcome the constraint of conventional tilted beam-based bistable mechanism, this paper proposes a novel type of bistable structure based on tilted-angle compound parallelogram flexure to achieve a larger stroke of negative stiffness region while maintaining a compact physical size. As an application of the presented bistable mechanism, a flexure constant-force micropositioning stage is designed to deliver a large stroke. The constant force output is obtained by combining a bistable flexure mechanism with a positive-stiffness flexure mechanism. To facilitate the parametric design of the flexure mechanism, analytical models are derived to quantify the stage performance. The models are verified by carrying out nonlinear finite-element analysis (FEA). A metal prototype is fabricated for experimental study. Results demonstrate the effectiveness of the proposed ideas for a long-stroke, constant-force compliant mechanism dedicated to precision micropositioning applications. Experimental results also show the appearance of two-stage constant force due to the manufacturing errors of the bistable beams.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
3.
Xu
,
Q.
,
2012
, “
New Flexure Parallel-Kinematic Micropositioning System With Large Workspace
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
478
491
.
4.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061009
.
5.
Xu
,
Q.
,
2016
,
Design and Implementation of Large-Range Compliant Micropositioning Systems
,
Wiley
, Hoboken, NJ.
6.
Morsch
,
F. M.
, and
Herder
,
J. L.
,
2010
, “
Design of a Generic Zero Stiffness Compliant Joint
,”
ASME
Paper No. DETC2010-28351.
7.
Deepak
,
S. R.
, and
Ananthasuresh
,
G. K.
,
2012
, “
Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021014
.
8.
Lassooij
,
J.
,
Tolou
,
N.
,
Tortora
,
G.
,
Caccavaro
,
S.
,
Menciassi
,
A.
, and
Herder
,
J. L.
,
2012
, “
A Statically Balanced and Bi-Stable Compliant End Effector Combined With a Laparoscopic 2DoF Robotic Arm
,”
Mech. Sci.
,
3
(
2
), pp.
85
93
.
9.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
10.
Dunning
,
A. G.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2013
, “
A Compact Low-Stiffness Six Degrees of Freedom Compliant Precision Stage
,”
Precis. Eng.
,
37
(
2
), pp.
380
388
.
11.
Tolou
,
N.
,
Pluimers
,
P.
,
Jensen
,
B. D.
,
Magleby
,
S.
,
Howell
,
L. L.
, and
Herder
,
J. L.
,
2012
, “
Near-Zero-Stiffness Linear Motion Stage With High Orthogonal and Out-of-Plane Stiffness
,”
1st DSPE Conference on Precision Mechatronics
, pp.
1
2
.
12.
Dunning
,
A. G.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2011
, “
Inventory of Platforms Towards the Design of a Statically Balanced Six Degrees of Freedom Compliant Precision Stage
,”
Mech. Sci.
,
2
(
2
), pp.
157
168
.
13.
Hoetmer
,
K.
,
Woo
,
G.
,
Kim
,
C.
, and
Herder
,
J.
,
2010
, “
Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms: Design and Testing
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041007
.
14.
Lan
,
C.-C.
, and
Cheng
,
Y.-J.
,
2008
, “
Distrubuted Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072304
.
15.
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Modeling and Experimental Validation of Actuating a Bistable Buckled Beam Via Moment Input
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051005
.
16.
Sarojini
,
D.
,
Lassche
,
T. J.
,
Herder
,
J. L.
, and
Ananthasuresh
,
G. K.
,
2016
, “
Statically Balanced Compliant Two-Port Bistable Mechanism
,”
Mech. Mach. Theory
,
102
, pp.
1
13
.
17.
Todd
,
B.
,
Jensen
,
B. D.
,
Schultz
,
S. M.
, and
Hawkins
,
A. R.
,
2010
, “
Design and Testing of a Thin-Flexure Bistable Mechanism Suitable for Stamping From Metal Sheets
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071011
.
18.
Kim
,
C.
, and
Ebenstein
,
D.
,
2012
, “
Curve Decomposition for Large Deflection Analysis of Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041009
.
19.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
20.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
21.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
22.
Xu
,
Q.
,
2015
, “
Design of a Constant-Force Flexure Micropositioning Stage With Long Stroke
,”
ASME
Paper No. DETC2015-46672.
23.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
, Hoboken, NJ.
24.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
25.
Zhou
,
G.
, and
Dowd
,
P.
,
2003
, “
Tilted Folded-Beam Suspension for Extending the Stable Travel Range of Comb-Drive Actuators
,”
J. Micromech. Microeng.
,
13
(
2
), pp.
178
183
.
You do not currently have access to this content.