This paper presents a classification of 3T1R parallel manipulators (PMs) based on the wrench graph. By using the theory of reciprocal screws, the properties of the three-dimensional projective space, the wrench graph, and the superbracket decomposition of Grassmann–Cayley algebra, six typical wrench graphs for 3T1R parallel manipulators are obtained along with their singularity conditions. Furthermore, this paper shows a way in which each of the obtained typical wrench graphs can be used in order to synthesize new 3T1R parallel manipulator architectures with known singularity conditions and with an understanding of their geometrical properties and assembly conditions.

References

References
1.
Angeles
,
J.
,
Caro
,
S.
,
Khan
,
W.
, and
Morozov
,
A.
,
2006
, “
The Kinetostatic Design of an Innovative Schoenflies Motion Generator
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
935
944
.
2.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
, and
Poignet
,
S. K. P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
3.
Rat
,
N.
,
Neagoe
,
M.
, and
Gogu
,
G.
,
2009
, “
Theoretical and Experimental Research on the Dynamics of a 4 DOF Isoglide 4-T3R1 Parallel Robot
,”
10th IFToM International Symposium on Science of Mechanisms and Machines
, Brasov, Romania, Oct. 12–15, pp.
387
396
.
4.
Gogu
,
G.
,
2010
,
Structural Synthesis of Parallel Robots, Part 3: Topologies With Planar Motion of the Moving Platform
,
Springer, Dordrecht
, The
Netherlands
.
5.
Kong
,
X.
, and
Gosselin
,
C.
,
2010
, “
Forward Displacement Analysis of a Quadratic 4-DOF 3T1R Parallel Manipulator
,”
Meccanica
,
46
(
1
), pp.
147
154
.
6.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Atlanta, GA, Sept. 19–23, pp.
508
513
.
7.
Pierrot
,
F.
,
Marquet
,
F.
,
Company
,
O.
, and
Gil
,
T.
,
2001
, “
H4 Parallel Robot: Modeling, Design and Preliminary Experiments
,”
IEEE
International Conference on Robotics and Automation
, Seoul, Korea, May 21–26, pp.
3256
3261
.
8.
Wu
,
J.
, and
Yin
,
Z
,
2008
, “
A Novel 4-DOF Parallel Manipulator H4
,”
Parallel Manipulators, Towards New Applications
,
H.
Wu
, ed.,
I-Tech Education and Publishing
,
Vienna, Austria
, pp.
405
448
.
9.
Briot
,
S.
, and
Bonev
,
I.
,
2009
, “
Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications
,”
ASME J. Mech. Rob.
,
1
(
2
), pp.
1
9
.
10.
Briot
,
S.
, and
Bonev
,
I.
,
2010
, “
Pantopteron-4: A New 3T1R Decoupled Parallel Manipulator for Pick-and-Place Applications
,”
Mech. Mach. Theory
,
45
(
5
), pp.
707
721
.
11.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
12.
Wu
,
G.
,
Bai
,
S.
, and
Hjornet
,
P.
,
2015
, “
Multi-Objective Design Optimization of a Parallel Schönflies-Motion Robot
,”
Advances in Reconfigurable Mechanisms and Robots II
(Mechanisms and Machine Science), Vol.
36
,
Springer
,
Cham, Switzerland
, pp.
657
667
.
13.
Carricato
,
M.
,
2005
, “
Fully Isotropic Four-Degrees-of-Freedom Parallel Mechanisms for Schoenflies Motion
,”
Int. J. Rob. Res.
,
24
(
5
), pp.
397
414
.
14.
Merlet
,
J.-P.
,
1996
, “
Redundant Parallel Manipulators
,”
Lab. Rob. Autom.
,
8
(
1
), pp.
17
24
.
15.
Wu
,
J.
,
Chen
,
X.
,
Wang
,
L.
, and
Liu
,
X.
,
2014
, “
Dynamic Load-Carrying Capacity of a Novel Redundantly Actuated Parallel Conveyor
,”
Nonlinear Dyn.
,
78
(
1
), pp.
241
250
.
16.
Wu
,
J.
,
Chen
,
X.
, and
Wang
,
L.
,
2016
, “
Design and Dynamics of a Novel Solar Tracker With Parallel Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
88
97
.
17.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.
18.
Huang
,
Z.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint–Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
19.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanism
,
Springer
,
Heidelberg, Germany
.
20.
Ling
,
S.
, and
Huang
,
M. Z.
,
1995
, “
Kinestatic Analysis of General Parallel Manipulators
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
601
606
.
21.
Joshi
,
S.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
22.
Ben-Horin
,
P.
, and
Shoham
,
M.
,
2006
, “
Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann Cayley Algebra
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
577
590
.
23.
Ben-Horin
,
P.
, and
Shoham
,
M.
,
2007
, “
Singularity of Gough–Stewart Platforms With Collinear Joints
,”
12th IFToMM World Congress
, Besançon, France, June 17–20.
24.
Kanaan
,
D.
,
Wenger
,
P.
,
Caro
,
S.
, and
Chablat
,
D.
,
2009
, “
Singularity Analysis of Lower-Mobility Parallel Manipulators Using Grassmann Cayley Algebra
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
995
1004
.
25.
Amine
,
S.
,
Caro
,
S.
,
Wenger
,
P.
, and
Kanaan
,
D.
,
2012
, “
Singularity Analysis of the H4 Robot Using Grassmann–Cayley Algebra
,”
Robotica
,
30
(
7
), pp.
1109
1118
.
26.
Amine
,
S.
,
Tale Masouleh
,
M.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Analysis of 3T2R Parallel Mechanisms Using Grassmann–Cayley Algebra and Grassmann Geometry
,”
Mech. Mach. Theory
,
52
, pp.
326
340
.
27.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), pp.
1
11
.
28.
Amine
,
S.
,
2011
, “
Lower-Mobility Parallel Manipulators: Geometrical Analysis, Singularities and Conceptual Design
,” Ph.D. thesis, Ecole Centrale de Nantes, Nantes, France.
29.
Kong
,
X.
,
Gosselin
,
C.
, and
Richard
,
P.-L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
30.
Gan
,
D.
,
Dai
,
J.
, and
Liao
,
Q.
,
2007
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
31.
Gan
,
D.
,
Dai
,
J.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
32.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
,
2002
, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J. Ser. C
,
45
(
3
), pp.
730
740
.
You do not currently have access to this content.