Constant torque compliant mechanisms produce an output torque that does not change in a large range of input rotation. They have wide applications in aerospace, automobile, timing, gardening, medical, and healthcare devices. Unlike constant force compliant mechanisms, the synthesis of constant torque compliant mechanisms has not been extensively investigated yet. In this paper, a method is presented for synthesizing constant torque compliant mechanisms that have coaxial input rotation and output torque. The same shaft is employed for both input rotation and output torque. A synthesized constant torque compliant mechanism is modeled as a set of variable width spline curves within an annular design domain formed between a rotation shaft and a fixed ring. Interpolation circles are used to define variable width spline curves. The synthesis of constant torque compliant mechanisms is systematized as optimizing the control parameters of the interpolation circles of the variable width spline curves. The presented method is demonstrated by the synthesis of constant torque compliant mechanisms that have different number of variable width spline curves in this paper.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
3.
McGuire
,
J. R.
,
1994
, “
Analysis and Design of Constant-Torque Springs Used in Aerospace Applications
,” Ph.D. dissertation, University of Texas in Austin, Austin, TX.
4.
Hou
,
C. W.
, and
Lan
,
C. C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.
5.
Associated Spring Corporation
,
1981
, “
Engineering Guide to Spring Design
,” Associated Spring Corporation, Bristol, CT.
6.
Brown
,
A. A.
,
1981
,
Mechanical Springs
,
Oxford University Press
,
Oxford, UK
.
7.
Ahmed
,
A.
, and
Zhou
,
H.
,
2014
, “
Spring Synthesis for Nonlinear Force–Displacement Function
,”
Int. J. Eng. Res. Technol.
,
3
(
3
), pp.
168
173
.
8.
Ahmed
,
A.
, and
Zhou
,
H.
,
2014
, “
Synthesis of Nonlinear Spiral Torsion Springs
,”
Int. J. Eng. Res. Technol.
,
3
(
6
), pp.
4
9
.
9.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
10.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
,
2006
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
9
), pp.
1101
1112
.
11.
Chen
,
Y. H.
, and
Lan
,
C. C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
12.
Rahman
,
U. M.
, and
Zhou
,
H.
,
2014
, “
Design of Constant Force Compliant Mechanisms
,”
Int. J. Eng. Res. Technol.
,
3
(
7
), pp.
14
19
.
13.
Morteson
,
M. E.
,
2006
,
Geometric Modeling
,
Industrial Press
,
New York
.
14.
Salomon
,
D.
,
2006
,
Curves and Surfaces for Computer Graphics
,
Springer
,
New York
.
15.
Zhou
,
H.
, and
Ting
,
K. L.
,
2006
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
551
558
.
16.
Hanselman
,
D.
, and
Littlefield
,
B.
,
2012
,
Mastering MATLAB
,
Pearson
,
Boston, MA
.
17.
MathWorks
,
2012
, “
Global Optimization Toolbox User's Guide
,” MathWorks, Natick, MA.
18.
Dill
,
E. H.
,
2012
,
The Finite Element Method for Mechanics of Solids With ANSYS Applications
,
CRC Press
,
New York
.
19.
ANSYS
,
2012
, “
ANSYS Parametric Design Language Guide
,” ANSYS, Canonsburg, PA.
20.
ANSYS
,
2012
, “
ANSYS Mechanical APDL Operations Guide
,” ANSYS, Canonsburg, PA.
21.
Shih
,
R. H.
, and
Schilling
,
P. J.
,
2016
,
Parametric Modeling With SolidWorks 2016
,
SDC Publications
,
Mission, KS
.
22.
Electromatic Equipment
,
2015
, “
TSD Digital Torque Screwdriver Instruction Manual
,” Electromatic Equipment, Cedarhurst, NY.
You do not currently have access to this content.