A spatial parallel kinematic mechanism (PKM) with five degrees of freedom (DoFs) and three limbs is proposed in this paper. To investigate the characteristics of the proposed mechanism's DoFs, mobility analysis based on a line graph method and Grassmann line geometry is carried out. The results show that the mobile platform can rotate about a fixed point at the base and translate in a specific plane (i.e., three rotations and two translations). Therefore, the mobile platform can be located at an arbitrary point in the space and has flexible orientational capability. The orientation of the mobile platform is described by using tilt-and-torsion (T&T) angles, and the kinematics model is established with this precondition. Within the process of kinematics modeling, parasitic motion of the mobile platform is analyzed, and singularity configurations are also disclosed. On this basis, four working modes with different configurations are identified, and one of them is focused on and investigated in detail. The proposed PKM has good potential to be used in the development of movable machine centers. The kinematic analysis is very helpful for the understanding of the concept and the potential applications.

References

References
1.
Zeng
,
Q.
, and
Fang
,
Y. F.
,
2012
, “
Structural Synthesis and Analysis of Serial-Parallel Hybrid Mechanisms With Spatial Multi-Loop Kinematic Chains
,”
Mech. Mach. Theory
,
49
, pp.
198
215
.
2.
Ding
,
H. F.
,
Huang
,
P.
,
Liu
,
J. F.
, and
Kecskemethy
,
A.
,
2013
, “
Automatic Structural Synthesis of the Whole Family of Planar 3-Degrees of Freedom Closed Loop Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041006
.
3.
Yang
,
T. L.
, and
Sun
,
D. J.
,
2012
, “
A General Degree of Freedom Formula for Parallel Mechanisms and Multiloop Spatial Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011001
.
4.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y.
,
Zhang
,
J.
, and
Sun
,
T.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
.
5.
Gosselin
,
C.
, and
Schreiber
,
L.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
6.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2T and 3R3T Parallel Mechanisms With High Rotational Capability
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011004
.
7.
Sun
,
T.
,
Song
,
Y.
,
Gao
,
H.
, and
Qi
,
Y.
,
2015
, “
Topology Synthesis of a 1-Translational and 3-Rotational Parallel Manipulator With an Articulated Traveling Plate
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031015
.
8.
Huang
,
Y. M.
,
Cheng
,
X.
,
Gao
,
F.
, and
Tong
,
J. X.
,
2005
, “
The 3-PRS Parallel Spindle Module With Multi-Posture Vertical and Horizontal Machining Capability
,”
Int. J. Prod. Res.
,
43
(
3
), pp.
465
470
.
9.
Sun
,
T.
,
Lian
,
B.
, and
Song
,
Y.
,
2016
, “
Stiffness Analysis of a 2-DoF Over-Constrained RPM With an Articulated Traveling Platform
,”
Mech. Mach. Theory
,
96
(1), pp.
165
178
.
10.
Wang
,
J. S.
,
Liu
,
X. J.
, and
Wu
,
C.
,
2009
, “
Optimal Design of a New Spatial 3-DOF Parallel Robot With Respect to a Frame-Free Index
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
4
), pp.
986
999
.
11.
Xie
,
F. G.
,
Liu
,
X. J.
,
Zhang
,
H.
, and
Wang
,
J. S.
,
2011
, “
Design and Experimental Study of the SPKM165: A Five-Axis Serial-Parallel Kinematic Milling Machine
,”
Sci. China Technol. Sci.
,
54
(
5
), pp.
1193
1205
.
12.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Zhou
,
Y. H.
,
2014
, “
Development and Experimental Study of a Redundant Hybrid Machine With Five-Face Milling Capability in One Setup
,”
Int. J. Precis. Eng. Manuf.
,
15
(
1
), pp.
13
21
.
13.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Rob. Comput. Integr. Manuf.
,
28
(
3
), pp.
334
343
.
14.
Kanaan
,
D.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2009
, “
Kinematic Analysis of a Serial-Parallel Machine Tool: The VERNE Machine
,”
Mech. Mach. Theory
,
44
(
2
), pp.
487
498
.
15.
Bonev, I., 2010, “
The Hermes 3-Axis Machine Tool
,”
ParalleMIC
, epub.
16.
Eckenstein
,
N.
, and
Yim
,
M.
,
2013
, “
Modular Advantage and Kinematic Decoupling in Gravity Compensated Robotic Systems
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041013
.
17.
Tao
,
Z.
, and
An
,
Q.
,
2013
, “
Interference Analysis and Workspace Optimization of 3-RRR Spherical Parallel Mechanism
,”
Mech. Mach. Theory
,
69
, pp.
62
72
.
18.
METROM, 2015, “
METROM Mobile Machine—On-Site Machining
,”
Mechatronische Maschinen GmbH
, Hartmannsdorf, Germany.
19.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
20.
Ruggiu
,
M.
, and
Kong
,
X.
,
2012
, “
Mobility and Kinematic Analysis of a Parallel Mechanism With Both PPR and Planar Operation Modes
,”
Mech. Mach. Theory
,
55
, pp.
77
90
.
21.
Wampler
,
C. W.
,
Hauenstein
,
J. D.
, and
Sommese
,
A. J.
,
2011
, “
Mechanism Mobility and a Local Dimension Test
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1193
1206
.
22.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
23.
Li
,
Q.
,
Chai
,
X.
, and
Xiang
,
J.
,
2016
, “
Mobility Analysis of Limited-Degrees-of-Freedom Parallel Mechanisms in the Framework of Geometric Algebra
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041005
.
24.
Huang
,
Z.
,
Liu
,
J.
, and
Zeng
,
D.
,
2009
, “
A General Methodology for Mobility Analysis of Mechanisms Based on Constraint Screw Theory
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
5
), pp.
1337
1347
.
25.
Yu
,
J. J.
,
Dong
,
X.
,
Pei
,
X.
, and
Kong
,
X. W.
,
2012
, “
Mobility and Singularity Analysis of a Class of Two Degrees of Freedom Rotational Parallel Mechanisms Using a Visual Graphic Approach
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041006
.
26.
Li
,
Q. C.
,
Chen
,
Q. H.
,
Wu
,
C. Y.
, and
Huang
,
Z.
,
2013
, “
Geometrical Distribution of Rotational Axes of 3-[P][S] Parallel Mechanisms
,”
Mech. Mach. Theory
,
65
, pp.
46
57
.
27.
Bonev
,
I. A.
,
2008
, “
Direct Kinematics of Zero-Torsion Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
3851
3856
.
28.
Bonev
,
I. A.
,
2002
, “
Geometric Analysis of Parallel Mechanisms
,”
Ph.D. thesis
, Laval University, Quebec, QC, Canada.
29.
Kaloorazi
,
M. F.
,
Masouleh
,
M. T.
, and
Caro
,
S.
,
2015
, “
Determination of the Maximal Singularity-Free Workspace of 3-DOF Parallel Mechanisms With a Constructive Geometric Approach
,”
Mech. Mach. Theory
,
84
, pp.
25
36
.
30.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
,
Umer
,
R.
, and
Seneviratne
,
L.
,
2015
, “
Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041022
.
31.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(1), p.
011011
.
32.
Wolf
,
A.
, and
Glozman
,
D.
,
2011
, “
Singularity Analysis of Large Workspace 3RRRS Parallel Mechanism Using Line Geometry and Linear Complex Approximation
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011004
.
33.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
34.
Xie
,
F. G.
,
Liu
,
X. J.
,
You
,
Z.
, and
Wang
,
J. S.
,
2014
, “
Type Synthesis of 2T1R-Type Parallel Kinematic Mechanisms and the Application in Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
30
(
1
), pp.
1
10
.
35.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME Press
,
New York
.
36.
Li
,
Q. C.
,
Chen
,
Z.
,
Chen
,
Q. H.
,
Wu
,
C. Y.
, and
Hu
,
X. D.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
389
396
.
You do not currently have access to this content.