This paper presents a comprehensive methodology for ensuring the geometric pose accuracy of a 4DOF high-speed pick-and-place parallel robot having an articulated traveling plate. The process is implemented by four steps: (1) formulation of the error model containing all possible geometric source errors; (2) tolerance design of the source errors affecting the uncompensatable pose accuracy via sensitivity analysis; (3) identification of the source errors affecting the compensatable pose accuracy via a simplified model and distance measurements; and (4) development of a linearized error compensator for real-time implementation. Experimental results show that a tilt angular accuracy of 0.1/100 and a volumetric/rotational accuracy of 0.5 mm/±0.8 deg of the end-effector can be achieved over the cylindrical task workspace.

References

References
1.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
2.
Li
,
Y. H.
,
Ma
,
Y.
,
Liu
,
S. T.
,
Luo
,
Z. J.
,
Mei
,
J. P.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2014
, “
Integrated Design of a 4-DOF High-Speed Pick-and-Place Parallel Robot
,”
Ann. CIRP
,
63
(
1
), pp.
185
188
.
3.
Merlet
,
J. P.
,
2006
,
Parallel Robots
,
2nd ed.
(Solid Mechanics and Its Applications, Vol.
128
),
Springer
,
Dordrecht, The Netherlands
.
4.
Renaud
,
P.
,
Andreff
,
N.
,
Martinet
,
P.
, and
Gogu
,
G.
,
2005
, “
Kinematic Calibration of Parallel Mechanisms: A Novel Approach Using Legs Observation
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
529
538
.
5.
Jeon
,
D.
,
Kim
,
K.
,
Jeong
,
J. I.
, and
Kim
,
J.
,
2010
, “
A Calibration Method of Redundantly Actuated Parallel Mechanism Machines Based on Projection Technique
,”
Ann. CIRP
,
59
(
1
), pp.
413
416
.
6.
Takeda
,
Y.
,
Shen
,
G.
, and
Funabashi
,
H.
,
2004
, “
A DBB-Based Kinematic Calibration Method for In-parallel Actuated Mechanisms Using a Fourier Series
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
856
865
.
7.
Corbel
,
D.
,
Nabat
,
V.
, and
Maurine
,
P.
,
2006
, “
Geometrical Calibration of the High Speed Robot Par4 Using a Laser Tracker
,”
12th IEEE International Conference on Methods and Models in Automation and Robotics
(
MMAR
), Miedzyzdroje, Poland, Aug. 28–31, pp.
687
692
.
8.
Deblaise
,
D.
, and
Maurine
,
P.
,
2005
, “
Effective Geometrical Calibration of a Delta Parallel Robot Used in Neurosurgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2005
), Alberta, Canada, Aug. 2–6, pp.
1313
1318
.
9.
Vischer
,
P.
, and
Clavel
,
R.
,
1998
, “
Kinematic Calibration of the Parallel Delta Robot
,”
Robotica
,
16
(
2
), pp.
207
218
.
10.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Chetwynd
,
D. G.
,
2002
, “
A Unified Error Model for Tolerance Design, Assembly and Error Compensation of 3-DOF Parallel Kinematic Machines With Parallelogram Struts
,”
Ann. CIRP
,
51
(
1
), pp.
297
301
.
11.
Bai
,
P.
,
Mei
,
J.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of Delta Robot Using Distance Measurements
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
3
), pp.
414
424
.
12.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2006
, “
Sensitivity Analysis of the Orthoglide, a 3-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
392
402
.
13.
Briot
,
S.
, and
Bonev
,
I. A.
,
2010
, “
Accuracy Analysis of 3T1R Fully-Parallel Robots
,”
Mech. Mach. Theory
,
45
(
5
), pp.
695
706
.
14.
Huang
,
T.
,
Chetwynd
,
D. G.
,
Mei
,
J. P.
, and
Zhao
,
X. M.
,
2006
, “
Tolerance Design of a 2-DOF Overconstrained Translational Parallel Robot
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
167
172
.
15.
Schellekens
,
P.
,
Rosielle
,
N.
,
Vermeulen
,
H.
,
Vermeulen
,
M.
,
Wetzels
,
S.
, and
Pril
,
W.
,
1998
, “
Design for Precision: Current Status and Trends
,”
Ann. CIRP
,
47
(
2
), pp.
557
586
.
16.
Prabhaharan
,
G.
,
Asokan
,
P.
,
Ramesh
,
P.
, and
Rajendran
,
S.
,
2004
, “
Genetic-Algorithm-Based Optimal Tolerance Allocation Using a Least-Cost Model
,”
J. Adv. Manuf. Technol.
,
24
(
9
), pp.
647
660
.
17.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
86
94
.
18.
Dumas
,
A.
,
Gayton
,
N.
,
Dantan
,
J. Y.
, and
Sudret
,
B.
,
2015
, “
A New System Formulation for the Tolerance Analysis of Overconstrained Mechanisms
,”
Probab. Eng. Mech.
,
40
(
1
), pp.
66
74
.
19.
Goldsztejn
,
A.
,
Caro
,
S.
, and
Chabert
,
G.
,
2015
, “
A New Methodology for Tolerance Synthesis of Parallel Manipulators
,”
14th IFToMM World Congress in Mechanism and Machine Science
(
IFToMM 2015
), Taipei, Taiwan, Oct. 25–30, pp.
132
141
.
20.
Wu
,
Y.
,
Klimchik
,
A.
,
Caro
,
S.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2015
, “
Geometric Calibration of Industrial Robots Using Enhanced Partial Pose Measurements and Design of Experiments
,”
Rob. Comput.-Integr. Manuf.
,
35
(
1
), pp.
151
168
.
21.
Borm
,
J. H.
, and
Menq
,
C. H.
,
1991
, “
Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure
,”
Int. J. Rob. Res.
,
10
(
1
), pp.
51
63
.
22.
Driels
,
M. R.
, and
Pathre
,
U. S.
,
1990
, “
Significance of Observation Strategy on the Design of Robot Calibration Experiments
,”
J. Rob. Syst.
,
7
(
2
), pp.
197
223
.
23.
Khalil
,
W.
,
Gautier
,
M.
, and
Enguehard
,
Ch.
,
1991
, “
Identifiable Parameters and Optimum Configurations for Robots Calibration
,”
Robotica
,
9
(
1
), pp.
63
70
.
24.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
,
1990
, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.
25.
Huang
,
T.
,
Chetwynd
,
D. G.
,
Whitehouse
,
D. J.
, and
Wang
,
J.
,
2005
, “
A General and Novel Approach for Parameter Identification of 6-DOF Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
40
(
2
), pp.
219
239
.
26.
Daney
,
D.
,
Madeline
,
B.
, and
Papegay
,
Y.
,
2005
, “
Choosing Measurement Poses for Robot Calibration With Local Convergence Method and Tabu Search
,”
Int. J. Rob. Res.
,
24
(
6
), pp.
501
518
.
27.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Observability Index Selection for Robot Calibration
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
831
836
.
28.
Joubair
,
A.
, and
Bonev
,
I. A.
,
2013
, “
Comparison of the Efficiency of Five Observability Indices for Robot Calibration
,”
Mech. Mach. Theory
,
70
(
6
), pp.
254
265
.
29.
Joubair
,
A.
,
Nubiola
,
A.
, and
Bonev
,
I.
,
2013
, “
Calibration Efficiency Analysis Based on Five Observability Indices and Two Calibration Models for a Six-Axis Industrial Robot
,”
SAE Int. J. Aerosp.
,
6
(
1
), pp.
161
168
.
30.
ISO
,
1998
, “
Manipulating Industrial Robots—Performance Criteria and Related Test Methods
,”
International Standards Organization, Geneva
, Switzerland, Standard No. ISO 9283, pp.
21
22
.
You do not currently have access to this content.