Surgical procedures are traditionally performed by two or more surgeons along with staff nurses: one serves as the primary surgeon and the other as his/her assistant. Introducing surgical robots into the operating room has significantly changed the dynamics of interaction between the surgeons and with the surgical site. In this paper, we design a surgical robotic system to support the collaborative operation of multiple surgeons. This Raven IV surgical robotic system has two pairs of articulated robotic arms with a spherical configuration, each arm holding an articulated surgical tool. It allows two surgeons to teleoperate the Raven IV system collaboratively from two remote sites. To optimize the mechanism design of the Raven IV system, we configure the link architecture of each robotic arm, along with the position and orientation of the four bases and the port placement with respect to the patient's body. The optimization considers seven different parameters, which results in 2.3×1010 system configurations. We optimize the common workspace and the manipulation dexterity of each robotic arm. We study here the effect of each individual parameter and conduct a brute force search to find the optimal set of parameters. The parameters for the optimized configuration result in an almost circular common workspace with a radius of 150 mm, accessible to all four arms.

References

References
1.
Selha
,
S.
,
Dupont
,
P.
,
Howe
,
R.
, and
Torchiana
,
D.
,
2001
, “
Dexterity Optimization by Port Placement in Robot-Assisted Minimally Invasive Surgery
,”
Proc. SPIE
,
4570
, pp.
97
104
.
2.
Cannon
,
J.
,
Stoll
,
J.
,
Selha
,
S.
,
Dupont
,
P.
,
Howe
,
R.
, and
Torchiana
,
D.
,
2003
, “
Port Placement Planning in Robot-Assisted Coronary Artery Bypass
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
912
917
.
3.
Trejos
,
A.
, and
Patel
,
R.
,
2005
, “
Port Placement for Endoscopic Cardiac Surgery Based on Robot Dexterity Optimization
,”
IEEE International Conference on Robotics & Automation
(
ROBOT
), Barcelona, Spain, Apr. 18–22, pp.
912
917
.
4.
Bauernschmitt
,
R.
,
Feuerstein
,
M.
,
Traub
,
J.
,
Schirmbeck
,
E.
,
Klinker
,
G.
, and
Lange
,
R.
,
2007
, “
Optimal Port Placement and Enhanced Guidance in Robotically Assisted Cardiac Surgery
,”
Surg. Endoscopy
,
21
(
4
), pp.
684
687
.
5.
Li
,
J.
,
Wang
,
S.
,
Wang
,
X.
, and
He
,
C.
,
2010
, “
Optimization of a Novel Mechanism for a Minimally Invasive Surgery Robot
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
6
(
1
), pp.
83
90
.
6.
Lum
,
M.
,
Friedman
,
D. C. W.
,
Sankaranarayanan
,
G.
,
King
,
H. K. F.
, II
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
, and
Sinanan
,
M. N.
,
2009
. “
The Raven—A Multidisciplinary Approach to Developing a Telesurgery System
,”
IJRR
,
28
(
9
), pp.
1183
1197
.
7.
Lum
,
M.
,
Rosen
,
J.
,
Lendvay
,
T. S.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2009
, “
Effect of Time Delay on Telesurgical Performance
,” IEEE International Conference on Robotics and Automation (
ICRA '09
), Kobe, Japan, May 12–17, pp.
4246
4252
.
8.
Lum
,
M. J.
,
Rosen
,
J.
,
King
,
H.
,
Friedman
,
D.
,
Lendvay
,
T.
,
Wright
,
A. S.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2009
, “
Teleoperation in Surgical Robotics—Network Latency Effects on Surgical Performance
,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBS 2010
), Minneapolis, MN, Sept. 3–6, pp.
6860
6863
.
9.
Lum
,
M. J.
,
Rosen
,
J.
,
Lendvay
,
T.
,
Wright
,
A. S.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2008
, “
TeleRobotic Fundamentals of Laparoscopic Surgery (FLS): Effects of Time Delay—Pilot Study
,” 30th Annual Conference of the IEEE Engineering in Medicine and Biology Society (
IEMBS
), Vancouver, Canada, Aug. 20–25, pp.
5597
5600
.
10.
Brett
,
H.
,
Doarn
,
C.
,
Rosen
,
J.
,
Hannaford
,
B.
, and
Broderick
,
T. J.
,
2008
, “
Evaluation of Unmanned Airborne Vehicles and Mobile Robotic Telesurgery in an Extreme Environment
,”
Telemedicine J. E-Health
,
14
(
6
), pp.
534
544
.
11.
Lum
,
M.
,
Friedman
,
D.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Wright
,
A.
,
Sinanan
,
M.
,
Lendvay
,
T.
,
Rosen
,
J.
, and
Hannaford
,
B.
,
2008
, “
Objective Assessment of Telesurgical Robot Systems: Telerobotic FLS
,”
Medicine Meets Virtual Reality
(
MMVR 16
), Long Beach, CA, Jan. 30–Feb. 1, pp.
263
265
.
12.
Sankaranarayanan
,
G.
,
Hannaford
,
B.
,
King
,
H.
,
Ko
,
S.
,
Lum
,
M.
,
Friedman
,
D.
,
Rosen
,
J.
, and
Hannaford
,
B.
,
2007
, “
Portable Surgery Master Station for Mobile Robotic Surgery
,”
1st International Conference on Robot Communication and Coordination
(
RoboComm '07
), Athens, Greece, Oct. 15–17, p. 28.
13.
Lum
,
M.
,
Friedman
,
D.
,
King
,
H.
,
Donlin
,
R.
,
Sankaranarayanan
,
G.
,
Broderick
,
T.
,
Sinanan
,
M.
,
Rosen
,
J.
, and
Hannaford
,
B.
,
2007
, “
Teleoperation of a Surgical Robot Via Airborne Wireless Radio and Transatlantic Internet Links
,”
Field and Service Robots
(Springer Tracts in Advanced Robotics), Vol. 42,
Springer
,
Berlin
, pp.
305
314
.
14.
Lum
,
M.
,
Rosen
,
J.
,
King
,
H.
,
Friedman
,
D.
,
Donlin
,
G.
,
Sankaranarayanan
,
G.
,
Harnett
,
B.
,
Huffman
,
L.
,
Doarn
,
C.
,
Broderick
,
T.
, and
Hannaford
,
B.
,
2007
, “
Telesurgery Via Unmanned Aerial Vehicle (UAV) With a Field Deployable Surgical Robot
,” Medicine Meets Virtual Reality (MMVR 15), Long Beach, CA, Feb. 6–9, pp.
313
315
.
15.
Lum
,
M.
,
Rosen
,
J.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2006
, “
Optimization of Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.
16.
Rosen
,
J.
,
Lum
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2011
, “
Raven: Developing a Surgical Robot From a Concept to a Transatlantic Teleoperation Experiment
,”
Surgical Robotics, Systems, Applications, and Visions
,
1st ed.
,
R. M.
Satava
, ed.,
Springer
,
New York
.
17.
Lum
,
M.
,
Rosen
,
J.
,
Sinanan
,
M.
, and
Hanaford
,
B.
,
2004
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,” IEEE International Conference on Robotics and Automation (
ICRA 2004
), New Orleans, LA, Apr. 26–May 1, pp.
829
834
.
18.
Craig
,
J.
,
2003
,
Introduction to Robotics: Mechanics and Control
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
, Chap. 1.
You do not currently have access to this content.