In this paper, a novel robotic gripper design with variable stiffness is proposed and fabricated using a modified additive manufacturing (hereafter called 3D printing) process. The gripper is composed of two identical robotic fingers and each finger has three rotational degrees-of-freedom as inspired by human fingers. The finger design is composed of two materials: acrylonitrile butadiene styrene (ABS) for the bone segments and shape-memory polymer (SMP) for the finger joints. When the SMP joints are exposed to thermal energy and heated to above their glass transition temperature (Tg), the finger joints exhibit very small stiffness, thus allow easy bending by an external force. When there is no bending force, the finger will restore to its original shape thanks to SMP's shape recovering stress. The finger design is actuated by a pneumatics soft actuator. Fabrication of the proposed robotic finger is made possible by a modified 3D printing process. An analytical model is developed to represent the relationship between the soft actuator's air pressure and the finger's deflection angle. Furthermore, analytical modeling of the finger stiffness modulation is presented. Several experiments are conducted to validate the analytical models.

References

References
1.
Zhou
,
X.
,
Majidi
,
C.
, and
O'Reilly
,
O. M.
,
2015
, “
Soft Hands: An Analysis of Some Gripping Mechanisms in Soft Robot Design
,”
Int. J. Solids Struct.
,
64
, pp.
155
165
.
2.
Cha
,
H. J.
,
Koh
,
K. C.
, and
Yi
,
B. J.
,
2014
, “
Stiffness Modeling of a Soft Finger
,”
Int. J. Control, Autom. Syst.
,
12
(
1
), pp.
111
117
.
3.
Nagase
,
J. Y.
,
Wakimoto
,
S.
,
Satoh
,
T.
,
Saga
,
N.
, and
Suzumori
,
K.
,
2011
, “
Design of a Variable-Stiffness Robotic Hand Using Pneumatic Soft Rubber Actuators
,”
Smart Mater. Struct.
,
20
(
10
), p.
105015
.
4.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci.
,
107
(
44
), pp.
18809
18814
.
5.
Jiang
,
A.
,
Aste
,
T.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2013
, “
Granular Jamming Transitions for a Robotic Mechanism
,”
AIP Conf. Proc.
1542
(
1
), pp.
385
388
.
6.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
1031
1042
.
7.
Majidi
,
C.
, and
Wood
,
R. J.
,
2010
, “
Tunable Elastic Stiffness With Microconfined Magnetorheological Domains at Low Magnetic Field
,”
Appl. Phys. Lett.
,
97
(
16
), p.
164104
.
8.
Wang
,
M.
, and
Fei
,
R.
,
1999
, “
Improvement of Machining Stability Using a Tunable Stiffness Boring Bar Containing an Electrorheological Fluid
,”
Smart Mater. Struct.
,
8
(
4
), p.
511
.
9.
Petit
,
F.
,
Friedl
,
W.
,
Hoppner
,
H.
, and
Grebenstein
,
M.
,
2015
, “
Analysis and Synthesis of the Bidirectional Antagonistic Variable Stiffness Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
684
695
.
10.
Henke
,
M.
,
Sorber
,
J.
, and
Gerlach
,
G.
,
2013
, “
EAP-Actuators With Improved Actuation Capabilities for Construction Elements With Controllable Stiffness
,”
Adv. Sci. Technol.
,
79
, pp.
75
80
.
11.
Clark
,
W. W.
,
Brigham
,
J. C.
,
Mo
,
C.
, and
Joshi
,
S.
,
2010
, “
Modeling of a High-Deformation Shape Memory Polymer Locking Link
,”
Proc. SPIE
,
7645
, p.
764507
.
12.
Shan
,
W.
,
Lu
,
T.
, and
Majidi
,
C.
,
2013
, “
Soft-Matter Composites With Electrically Tunable Elastic Rigidity
,”
Smart Mater. Struct.
,
22
(
8
), p.
085005
.
13.
Schubert
,
B. E.
, and
Floreano
,
D.
,
2013
, “
Variable Stiffness Material Based on Rigid Low-Melting-Point-Alloy Microstructures Embedded in Soft Poly (Dimethylsiloxane)(PDMS)
,”
RSC Adv.
,
3
(
46
), pp.
24671
24679
.
14.
Behl
,
M.
, and
Lendlein
,
A.
,
2007
, “
Shape-Memory Polymers
,”
Mater. Today
,
10
(
4
), pp.
20
28
.
15.
Takashima
,
K.
,
Zhang
,
N.
,
Mukai
,
T.
, and
Guo
,
S.
,
2010
, “
Fundamental Study of a Position-Keeping Module Using a Shape-Memory Polymer
,”
J. Rob. Soc. Jpn.
,
28
(
7
), pp.
905
912
.
16.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P. T.
,
2007
, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
,
17
(
16
), pp.
1543
1558
.
17.
Takashima
,
K.
,
Sugitani
,
K.
,
Morimoto
,
N.
,
Sakaguchi
,
S.
,
Noritsugu
,
T.
, and
Mukai
,
T.
,
2014
, “
Pneumatic Artificial Rubber Muscle Using Shape-Memory Polymer Sheet With Embedded Electrical Heating Wire
,”
Smart Mater. Struct.
,
23
(
12
), p.
125005
.
18.
Koerner
,
H.
,
Price
,
G.
,
Pearce
,
N. A.
,
Alexander
,
M.
, and
Vaia
,
R. A.
,
2004
, “
Remotely Actuated Polymer Nanocomposites—Stress-Recovery of Carbon-Nanotube-Filled Thermoplastic Elastomers
,”
Nat. Mater.
,
3
(
2
), pp.
115
120
.
19.
Leng
,
J.
,
Wu
,
X.
, and
Liu
,
Y.
,
2009
, “
Infrared Light-Active Shape Memory Polymer Filled With Nanocarbon Particles
,”
J. Appl. Polym. Sci.
,
114
(
4
), pp.
2455
2460
.
20.
Cho
,
J. W.
,
Kim
,
J. W.
,
Jung
,
Y. C.
, and
Goo
,
N. S.
,
2005
, “
Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes
,”
Macromol. Rapid Commun.
,
26
(
5
), pp.
412
416
.
21.
Schmidt
,
A. M.
,
2006
, “
Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles
,”
Macromol. Rapid Commun.
,
27
(
14
), pp.
1168
1172
.
22.
Yang
,
Y.
,
Chen
,
Y. H.
,
Wei
,
Y.
, and
Li
,
Y. T.
,
2015
, “
3D Printing of Shape Memory Polymer for Functional Part Fabrication
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9
), pp.
2079
2095
.
23.
McEvoy
,
M. A.
, and
Correll
,
N.
,
2014
, “
Thermoplastic Variable Stiffness Composites With Embedded, Networked Sensing, Actuation, and Control
,”
J. Compos. Mater.
,
49
(
15
), pp.
1799
1808
.
24.
Shan
,
W.
,
Diller
,
S.
,
Tutcuoglu
,
A.
, and
Majidi
,
C.
,
2015
, “
Rigidity-Tuning Conductive Elastomer
,”
Smart Mater. Struct.
,
24
(
6
), p.
065001
.
25.
Rousseau
,
I. A.
,
2008
, “
Challenges of Shape Memory Polymers: A Review of the Progress Toward Overcoming SMP's Limitations
,”
Polym. Eng. Sci.
,
48
(
11
), p.
2075
.
26.
Mattar
,
E.
,
2013
, “
A Survey of Bio-Inspired Robotics Hands Implementation: New Directions in Dexterous Manipulation
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
517
544
.
27.
Galloway
,
K. C.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2013
, “
Mechanically Programmable Bend Radius for Fiber-Reinforced Soft Actuators
,”
16th International Conference on Advanced Robotics
(
ICAR
), Montevideo, Uruguay, Nov. 25–29, pp.
1
6
.
28.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
29.
Jonsson
,
U.
,
Lindahl
,
O.
, and
Andersson
,
B.
,
2014
, “
Modeling the High-Frequency Complex Modulus of Silicone Rubber Using Standing Lamb Waves and an Inverse Finite Element Method
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
61
(
12
), pp.
2106
2120
.
30.
Eskandari
,
H.
,
Salcudean
,
S. E.
,
Rohling
,
R.
, and
Ohayon
,
J.
,
2008
, “
Viscoelastic Characterization of Soft Tissue From Dynamic Finite Element Models
,”
Phys. Med. Biol.
,
53
(
22
), p.
6569
.
31.
Udupa
,
G.
,
Sreedharan
,
P.
,
Dinesh
,
P. S.
, and
Kim
,
D.
,
2014
, “
Asymmetric Bellow Flexible Pneumatic Actuator for Miniature Robotic Soft Gripper
,”
J. Rob.
,
2014
, p.
902625
.
32.
Firouzeh
,
A.
,
Salerno
,
M.
, and
Paik
,
J.
,
2015
, “
Soft Pneumatic Actuator With Adjustable Stiffness Layers for Multi-DoF Actuation
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1117
1124
.
33.
Udupa
,
G.
,
Sreedharan
,
P.
, and
Aditya
,
K.
,
2010
, “
Robotic Gripper Driven by Flexible Microactuator Based on an Innovative Technique
,”
IEEE Workshop on Advanced Robotics and Its Social Impacts
(
ARSO
), Seoul, Korea, Oct. 6–28, pp.
111
116
.
34.
Tobushi
,
H.
,
Okumura
,
K.
,
Hayashi
,
S.
, and
Ito
,
N.
,
2001
, “
Thermomechanical Constitutive Model of Shape Memory Polymer
,”
Mech. Mater.
,
33
(
10
), pp.
545
554
.
You do not currently have access to this content.