A method for optimizing a mobile platform to form a wheeled manipulator is presented. For a given manipulator, this mobile platform is optimized to have maximum tip-over stability against the reaction forces and moments caused by the movement of the manipulator. This optimization is formulated as a max–min problem, i.e., to maximize a stable region ratio (SRR) over the manipulator's workspace while minimizing a tip-over moment (TOM). For a practical solution, this max–min problem is converted to two subproblems. The first one is the worst-case analysis to determine the maximum positive value of TOM through searching over the manipulator's workspace. A positive value of TOM indicates tip-over instability. The three parameters used for this search are pertaining to the mobile platform itself, i.e., the number of support wheels, the size, and mass of the mobile platform. The second subproblem is to optimize the placement of the manipulator and accessory on the mobile platform against the identified worst case so that the entire manipulator's workspace is stable. The effectiveness of the proposed method is demonstrated by applying it to optimize a mobile drilling and riveting robot.

References

References
1.
Liu
,
Y. G.
, and
Liu
,
G. J.
,
2010
, “
Interaction Analysis and Online Tip-Over Avoidance for a Reconfigurable Tracked Mobile Modular Manipulator Negotiating Slopes
,”
IEEE/ASME Trans. Mechatronics
,
15
(
4
), pp.
623
635
.
2.
Vysin
,
M.
, and
Knoflicek
,
R.
,
2003
, “
The Hybrid Mobile Robot
,”
IEEE
International Conference on Industrial Technology
, Dec. 10–12, Vol.
1
, pp.
262
264
.
3.
Papadopoulos
,
E. G.
, and
Rey
,
D. A.
,
1996
, “
A New Measure of Tipover Stability Margin for Mobile Manipulators
,”
IEEE International Conference on Robotics and Automation
, Minneapolis (
ICRA
), MN, Apr. 22–28, Vol.
4
, pp.
3111
3116
.
4.
Xu
,
Y. S.
, and
Ou
,
Y. S.
,
2006
,
Control of Single Wheel Robots
,
Springer
,
Berlin
.
5.
Nagarajan
,
U.
,
Kim
,
B.
, and
Hollis
,
R.
,
2012
, “
Planning in High-Dimensional Shape Space for a Single-Wheeled Balancing Mobile Robot With Arms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
130
135
.
6.
Lauwers
,
T.
,
Kantor
,
G.
, and
Hollis
,
R.
,
2007
, “
One is Enough!
,”
Robotics Research
(Springer Tracts in Advanced Robotics, Vol.
28
),
Springer-Verlag
,
Berlin
, pp.
327
336
.
7.
Umemoto
,
K.
, and
Murakami
,
T.
,
2012
, “
A Position Tracking Control of Two Wheel Mobile Manipulator Using COG Trajectory Based on Zero Dynamics
,”
38th Annual Conference on IEEE Industrial Electronics Society
(
IECON 2012
), Montreal, QC, Canada, Oct. 25–28, pp.
2638
2643
.
8.
Arling
,
R. W.
,
Kelly
,
W. P.
,
LeMay
,
P.
,
Morrell
,
J. B.
,
Pompa
,
J. B.
, and
Robinson
,
D. W.
,
2004
, “
Yaw Control for a Personal Transporter
,”
U.S. Patent No. 6,789,640
.
9.
Anderson
,
C.
,
Axelrod
,
B.
,
Case
,
J. P.
,
Choi
,
J.
,
Engel
,
M.
,
Gupta
,
G.
,
Hecht
,
F.
,
Hutchinson
,
J.
,
Krishnamurthi
,
N.
,
Lee
,
J.
,
Nguyen
,
H. D.
,
Roberts
,
R.
,
Rogers
,
J. G.
,
Trevor
,
A. J. B.
,
Christensen
,
H. I.
, and
Kemp
,
C.
,
2008
, “
Mobile Manipulation—A Challenge in Integration
,”
Proc. SPIE
,
6962
, p.
69620L
.
10.
Konidaris
,
G.
,
Kuindersma
,
S.
,
Grupen
,
R.
, and
Barto
,
A.
,
2011
, “
Autonomous Skill Acquisition on a Mobile Manipulator
,” 25th
AAAI
Conference on Artificial Intelligence
, San Francisco, CA, Aug. 7–11, pp.
1468
1473
.
11.
Bernier
,
E.
,
Chellali
,
R.
, and
Thouvenin
,
I. M.
,
2012
, “
The MobilAR Robot, Ubiquitous, Unobtrusive, Augmented Reality Device
,”
ASME
Paper No. ESDA2012-82794.
12.
Neobotix
,
2015
, “
Mobile Manipulators Overview
,” Neobotix GmbH, Heilbronn, Germany.
13.
Bogh
,
S.
,
Schou
,
C.
,
Thomas
,
R.
,
Kogan
,
Y.
,
Doemel
,
A.
,
Brucker
,
M.
,
Eberst
,
C.
,
Tornese
,
R.
,
Sprunk
,
C.
,
Tipaldi
,
G. D.
, and
Hennessy
,
T.
,
2014
, “
Integration and Assessment of Multiple Mobile Manipulators in a Real-World Industrial Production Facility
,”
41st International Symposium on Robotics
, Munich, Germany, June 2–3.
14.
Hvilshj
,
M.
,
Bgh
,
S.
,
Madsen
,
O.
, and
Kristiansen
,
M.
,
2009
, “
The Mobile Robot ‘Little Helper’: Concepts, Ideas and Working Principles
,”
IEEE
Conference on Emerging Technologies and Factory Automation
, Mallorca, Spain, Sept. 22–25.
15.
Ghasempoor
,
A.
, and
Sepehri
,
N.
,
1995
, “
A Measure of Machine Stability for Moving Base Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nagoya, Japan, May 21–27, pp.
2249
2254
.
16.
Li
,
Y.
, and
Liu
,
Y.
,
2005
, “
Kinematics and Tip-Over Stability Analysis for the Mobile Modular Manipulator
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
3
), pp.
331
343
.
17.
Hirose
,
S.
,
Tsukagoshi
,
H.
, and
Yoneda
,
K.
,
2001
, “
Normalized Energy Stability Margin and Its Contour of Walking Vehicles on Rough Terrain
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, Korea, May 21–26, Vol.
1
, pp.
181
186
.
18.
Sugano
,
S.
,
Huang
,
Q.
, and
Kato
,
I.
,
1993
, “
Stability Criteria in Controlling Mobile Robotic Systems
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Yokohama, Japan, July 26–30, Vol.
2
, pp.
832
838
.
19.
Moosavian
,
S. A. A.
, and
Alipour
,
K.
,
2006
, “
Moment-Height Tip-Over Measure for Stability Analysis of Mobile Robotic Systems
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
5546
5551
.
20.
Rey
,
D. A.
, and
Papadopoulos
,
E. G.
,
1997
, “
Online Automatic Tipover Prevention for Mobile Manipulators
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Grenoble, France, Sept. 7–11, Vol.
3
, pp.
1273
1278
.
21.
Li
,
Y. M.
, and
Liu
,
Y. G.
,
2006
, “
Real-Time Tip-Over Prevention and Path Following Control for Redundant Nonholonomic Mobile Modular Manipulators Via Fuzzy and Neural-Fuzzy Approaches
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
4
), pp.
753
764
.
22.
Ghafari
,
A. S.
,
Hosseinkhannazer
,
H.
, and
Meghdari
,
A.
,
2009
, “
Design Optimization of a Robotic Nurse Unit Based on Tip-Over Avoidance Using Differential Evolution Algorithm
,”
17th Annual (International) Conference on Mechanical Engineering
, Tehran, Iran, May 19–21.
23.
Ben-Tzvi
,
P.
,
Goldenberg
,
A. A.
, and
Zu
,
J. W.
,
2008
, “
Design, Simulations and Optimization of a Tracked Mobile Robot Manipulator With Hybrid Locomotion and Manipulation Capabilities
,”
IEEE International Conference on Robotics and Automation
,
ICRA 2008
, Pasadena, CA, May 19–23, pp.
2307
2312
.
24.
Donghun
,
L.
,
TaeWon
,
S.
, and
Kim
,
J.
,
2011
, “
Optimal Design and Workspace Analysis of a Mobile Welding Robot With a 3P3R Serial Manipulator
,”
Rob. Auton. Syst.
,
59
(
10
), pp.
813
826
.
25.
Tchon
,
K.
, and
Zadarnowska
,
K.
,
2003
, “
Kinematic Dexterity of Mobile Manipulators: An Endogenous Configuration Space Approach
,”
Robotica
,
21
(
5
), pp.
521
530
.
26.
Sakka
,
S.
, and
Chocron
,
O.
,
2001
, “
Optimal Design and Configurations of a Mobile Manipulator Using Genetic Algorithms
,” 10th
IEEE
International Workshop on Robot and Human Interactive Communication
, Bordeaux, Paris, Sept. 18–21, pp.
268
273
.
27.
Diegel
,
O.
,
Badve
,
A.
,
Bright
,
G.
,
Potgieter
,
J.
, and
Tlale
,
S.
,
2002
, “
Improved Mecanum Wheel Design for Omni-Directional Robots
,”
Australasian Conference on Robotics and Automation
, Auckland, New Zealand, Nov. 27–29, pp.
117
121
.
28.
Xi
,
F. F.
,
2009
, “
Computational Dynamics
,” Graduate Course Lecture Notes, Ryerson University, Toronto, ON, Canada.
29.
Bianco
,
G. L.
,
2009
, “
Evaluation of Generalized Force Derivatives by Means of a Recursive Newton–Euler Approach
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
954
959
.
30.
Safar
,
M. J. A.
,
Watanabe
,
K.
,
Maeyama
,
S.
, and
Nagai
,
I.
,
2014
, “
Tip-Over Stability Enhancement for Omnidirectional Mobile Robot
,”
Int. J. Intell. Unmanned Syst.
,
2
(
2
), pp.
91
106
.
31.
Kubota
,
T.
,
Kunii
,
Y.
,
Kuroda
,
Y.
, and
Otsuki
,
M.
,
2008
, “
Japanese Rover Test-Bed for Lunar Exploration
,”
International Symposium on Artificial Intelligence, Robotics and Automation in Space
(
i-SAIRAS
), Paper No. 77.
32.
Bayle
,
B.
,
Renaud
,
M.
, and
Fourquet
,
J.-Y.
,
2003
, “
Nonholonomic Mobile Manipulators: Kinematics, Velocities and Redundancies
,”
J. Intell. Rob. Syst.
,
36
(
1
), pp.
45
63
.
33.
Lewis
,
F. L.
,
Abdallah
,
C. T.
, and
Dawson
,
D. M.
,
1993
,
Control of Robot Manipulators
,
Macmillan
,
New York
.
You do not currently have access to this content.