Designing an effective cable architecture for a cable-driven robot becomes challenging as the number of cables and degrees of freedom of the robot increase. A methodology has been previously developed to identify the optimal design of a cable-driven robot for a given task using stochastic optimization. This approach is effective in providing an optimal solution for robots with high-dimension design spaces, but does not provide insights into the robustness of the optimal solution to errors in the configuration parameters that arise in the implementation of a design. In this work, a methodology is developed to analyze the robustness of the performance of an optimal design to changes in the configuration parameters. This robustness analysis can be used to inform the implementation of the optimal design into a robot while taking into account the precision and tolerances of the implementation. An optimized cable-driven robot leg is used as a motivating example to illustrate the application of the configuration robustness analysis. Following the methodology, the effect on robot performance due to design variations is analyzed, and a modified design is developed which minimizes the potential performance degradations due to implementation errors in the design parameters. A robot leg is constructed and is used to validate the robustness analysis by demonstrating the predicted effects of variations in the design parameters on the performance of the robot.

References

References
1.
Mao
,
Y.
, and
Agrawal
,
S.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
2.
Jin
,
X.
,
Cui
,
X.
, and
Agrawal
,
S.
,
2015
, “
Design of a Cable-Driven Active Leg Exoskeleton (C-ALEX) and Gait Training Experiments With Human Subjects
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
5578
5583
.
3.
Mao
,
Y.
,
Jin
,
X.
,
Dutta
,
G.
,
Scholz
,
J.
, and
Agrawal
,
S.
,
2015
, “
Human Movement Training With a Cable Driven Arm Exoskeleton (CAREX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
1
), pp.
84
92
.
4.
Wu
,
M.
,
Hornby
,
T. G.
,
Landry
,
J. M.
,
Roth
,
H.
, and
Schmit
,
B. D.
,
2011
, “
A Cable-Driven Locomotor Training System for Restoration of Gait in Human SCI
,”
Gait Posture
,
33
(
2
), pp.
256
260
.
5.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
6.
Ming
,
A.
, and
Higuchi
,
T.
,
1994
, “
Study of Multiple Degree-of-Freedom Positioning Mechanism Using Wires (Part1)—Concept, Design and Control
,”
Int. J. Jpn. Soc. Precis. Eng.
,
28
(
2
), pp.
131
138
.
7.
Mustafa
,
S.
, and
Agrawal
,
S.
,
2012
, “
On the Force-Closure Analysis of n-DOF Cable-Driven Open Chains Based on Reciprocal Screw Theory
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
22
31
.
8.
Rezazadeh
,
S.
, and
Behzadipour
,
S.
,
2007
, “
Tensionability Conditions of a Multi-Body System Driven by Cables
,”
ASME
Paper No. IMECE2007-42433.
9.
Yang
,
G.
,
Lin
,
W.
,
Pham
,
C.
, and
Yeo
,
S. H.
,
2005
, “
Kinematic Design of a 7-DOF Cable-Driven Humanoid Arm: A Solution-in-Nature Approach
,” 2005
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, July 24–28, pp.
444
449
.
10.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley Professional
,
Boston, MA
.
11.
Haupt
,
R. L.
, and
Haupt
,
S. E.
,
2004
,
Practical Genetic Algorithms
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
12.
Fouskakis
,
D.
, and
Draper
,
D.
,
2002
, “
Stochastic Optimization: A Review
,”
Int. Stat. Rev.
,
70
(
3
), pp.
315
349
.
13.
Bahrami
,
A.
,
Aghbali
,
B.
, and
Bahrami
,
M. N.
,
2012
, “
Design Optimization of a 3D Three Cable Driven Manipulator
,”
ASME
Paper No. DETC2012-70195.
14.
Jamwal
,
P. K.
,
Xie
,
S.
, and
Aw
,
K. C.
,
2009
, “
Kinematic Design Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Genetic Algorithm
,”
Rob. Auton. Syst.
,
57
(
10
), pp.
1018
1027
.
15.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
(
ICNN
), Perth, WA, Nov. 27–Dec. 1, Vol.
4
, pp.
1942
1948
.
16.
Perez
,
R. E.
, and
Behdinan
,
K.
,
2007
, “
Particle Swarm Optimization in Structural Design
,”
Swarm Intelligence, Focus on Ant and Particle Swarm Optimization
,
F. T. S.
Chan
and
M. K.
Tiwari
, eds.,
I-Tech Education and Publishing
,
Denmark
.
17.
Hassan
,
R.
,
Cohanim
,
B. E.
, and
de Weck
,
O. L.
,
2005
, “
Comparison of Particle Swarm Optimization and the Genetic Algorithm
,”
AIAA
Paper No. 2005-1897.
18.
Ma
,
M.
, and
Wang
,
J.
,
2011
, “
Hydraulic-Actuated Quadruped Robot Mechanism Design Optimization Based on Particle Swarm Optimization Algorithm
,”
2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce
(
AIMSEC
), Aug. 8–10, pp.
4026
4029
.
19.
Bryson
,
J. T.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2016
, “
Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041003
.
20.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
.
21.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
22.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2005
, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.
23.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Force-Closure Analysis of 6-DOF Cable Manipulators With Seven or More Cables
,”
Robotica
,
27
(
3
), pp.
209
215
.
You do not currently have access to this content.