A manipulator control system, for which isotropic compliance holds in the Euclidean space E(3), can be significantly simplified by means of diagonal decoupling. However, such simplification may introduce some limits to the region of the workspace where the sought property can be achieved. The present investigation reveals how to detect which peculiar subset, among four different classes, a given manipulator belongs to. The paper also introduces the concept of control gain ratio for each specific single-input/single-output joint control law in order to limit the maximum gain required to achieve the isotropic compliance condition.

References

References
1.
McCarthy
,
J.
,
2011
, “
21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
020201
.
2.
Borràs
,
J.
, and
Dollar
,
A.
,
2014
, “
Actuation Torque Reduction in Parallel Robots Using Joint Compliance
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021006
.
3.
Kao
,
I.
, and
Yang
,
F.
,
2004
, “
Stiffness and Contact Mechanics for Soft Fingers in Grasping and Manipulation
,”
IEEE Trans. Rob. Autom.
,
20
(
1
), pp.
132
135
.
4.
Zinn
,
M.
,
Khatib
,
O.
, and
Roth
,
B.
,
2004
, “
A New Actuation Approach for Human Friendly Robot Design
,”
IEEE International Conference on Robotics and Automation
(
ICRA’04
), New Orleans, LA, Apr. 26–May 1, Vol.
1
, pp.
249
254
.
5.
Sentis
,
L.
,
Park
,
J.
, and
Khatib
,
O.
,
2010
, “
Compliant Control of Multicontact and Center-of-Mass Behaviors in Humanoid Robots
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
483
501
.
6.
Visser
,
L.
,
Carloni
,
R.
, and
Stramigioli
,
S.
,
2011
, “
Energy-Efficient Variable Stiffness Actuators
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
865
875
.
7.
Li
,
M.
,
Wu
,
H.
, and
Handroos
,
H.
,
2011
, “
Static Stiffness Modeling of a Novel Hybrid Redundant Robot Machine
,”
Fusion Eng. Des.
,
86
(
9–11
), pp.
1838
1842
.
8.
Knapczyk
,
J.
, and
Ryska
,
M.
,
2012
, “
Stiffness Matrix Analysis of Six-Revolute Serial Manipulator
,”
Acta Mech. Autom.
,
6
(
2
), pp.
62
65
.
9.
Flacco
,
F.
,
De Luca
,
A.
,
Sardellitti
,
I.
, and
Tsagarakis
,
N.
,
2012
, “
On-Line Estimation of Variable Stiffness in Flexible Robot Joints
,”
Int. J. Rob. Res.
,
31
(
13
), pp.
1556
1577
.
10.
Chen
,
H.
, and
Liu
,
Y.
,
2013
, “
Robotic Assembly Automation Using Robust Compliant Control
,”
Rob. Comput.-Integr. Manuf.
,
29
(
2
), pp.
293
300
.
11.
Kim
,
H. S.
, and
Lipkin
,
H.
,
2014
, “
Stiffness of Parallel Manipulators With Serially Connected Legs
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031001
.
12.
Hu
,
B.
,
Yu
,
J.
,
Lu
,
Y.
,
Sui
,
C.
, and
Han
,
J.
,
2012
, “
Statics and Stiffness Model of Serial-Parallel Manipulator Formed by k Parallel Manipulators Connected in Series
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021012
.
13.
Huang
,
S.
, and
Schimmels
,
J.
,
2011
, “
Realization of an Arbitrary Planar Stiffness With a Simple Symmetric Parallel Mechanism
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041006
.
14.
Palli
,
G.
,
Berselli
,
G.
,
Melchiorri
,
C.
, and
Vassura
,
G.
,
2011
, “
Design of a Variable Stiffness Actuator Based on Flexures
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
034501
.
15.
Portman
,
V.
,
2011
, “
Stiffness Evaluation of Machines and Robots: Minimum Collinear Stiffness Value Approach
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011015
.
16.
Pottmann
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
,
1999
, “
An Introduction to Line Geometry With Applications
,”
Comput.-Aided Des.
,
31
(
1
), pp.
3
16
.
17.
Wolf
,
A.
, and
Shoham
,
M.
,
2003
, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
564
572
.
18.
Forsythe
,
G. E.
, and
Moler
,
C. B.
,
1967
,
Computer Solution of Linear Algebraic Systems
, Vol.
7
,
Prentice-Hall
,
Upper Saddle River, NJ
.
19.
Vinogradov
,
I. B.
,
Kobrinski
,
A. E.
,
Stepanenko
,
Y. E.
, and
Tives
,
L. T.
,
1971
, “
Details of Kinematics of Manipulators With the Method of Volumes
,”
Mekhanika Mashin
,
1
(
5
), pp.
5
16
.
20.
Kumar
,
A.
, and
Waldron
,
K. J.
,
1981
, “
The Workspace of a Mechanical Manipulator
,”
ASME J. Mech. Des.
,
103
(
3
), pp.
665
672
.
21.
Salisbury
,
J.
, and
Craig
,
J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
22.
Yoshikawa
,
T.
,
1984
, “
Analysis and Control of Robot Manipulators With Redundancy
,”
Robotics Research: The First International Symposium
, M. Brady and R. Paul, eds., MIT Press, Cambridge, MA, pp. 735–747.
23.
Paul
,
R. P.
, and
Stevenson
,
C. N.
,
1983
, “
Kinematics of Robot Wrists
,”
Int. J. Rob. Res.
,
2
(
1
), pp.
31
38
.
24.
Yang
,
D. C.
, and
Lai
,
Z. C.
,
1985
, “
On the Dexterity of Robotic Manipulators—Service Angle
,”
ASME J. Mech., Transm., Autom. Des.
,
107
(
5
), pp.
262
270
.
25.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
26.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
27.
Klein
,
C. A.
, and
Miklos
,
T. A.
,
1991
, “
Spatial Robotic Isotropy
,”
Int. J. Rob. Res.
,
10
(
4
), pp.
426
437
.
28.
Kim
,
J. O.
, and
Khosla
,
K.
,
1991
, “
Dexterity Measures for Design and Control of Manipulators
,”
IEEE/RSJ
International Workshop on Intelligent Robots and Systems
, Osaka, Japan, Nov. 3–5, pp.
758
763
.
29.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
30.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
31.
Park
,
F. C.
, and
Brockett
,
R. W.
,
1994
, “
Kinematic Dexterity of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
1
15
.
32.
Park
,
F. C.
,
1995
, “
Optimal Robot Design and Differential Geometry
,”
ASME J. Mech. Des.
,
117
, pp.
87
92
.
33.
Stocco
,
L.
,
Salcudean
,
S. E.
, and
Sassani
,
F.
,
1997
, “
Mechanism Design for Global Isotropy With Applications to Haptic Interfaces
,”
ASME Winter Annual Meeting, Dallas, TX
, Nov. 15–17, Vol.
61
, pp. 115–122
.
34.
Stocco
,
L.
,
Salcudean
,
S. E.
, and
Sassani
,
F.
,
1998
, “
Fast Constrained Global Minimax Optimization of Robot Parameters
,”
Robotica
,
16
(
6
), pp.
595
605
.
35.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
36.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots Via Theory of Linear Transformation
,”
Eur. J. Mech.-A/Solids
,
23
(
2
), pp.
1021
1039
.
37.
Belfiore
,
N.
,
Verotti
,
M.
, and
Consorti
,
L.
,
2010
, “
Comparative Analysis of Isotropy Indices in RR and RRP Arms
,”
Int. J. Mech. Control
,
11
(
1
), pp.
3
12
.
38.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D.
,
2011
, “
A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
150
156
.
39.
Belfiore
,
N.
,
Di Giamberardino
,
P.
,
Rudas
,
I.
, and
Verotti
,
M.
,
2011
, “
Isotropy in Any RR Planar Dyad Under Active Joint Stiffness Regulation
,”
Int. J. Mech. Control
,
12
(
1
), pp.
75
81
.
40.
Belfiore
,
N. P.
,
Verotti
,
M.
,
Di Giamberardino
,
P.
, and
Rudas
,
I. J.
,
2012
, “
Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041010
.
41.
Albu-Schäffer
,
A.
,
Fischer
,
M.
,
Schreiber
,
G.
,
Schoeppe
,
F.
, and
Hirzinger
,
G.
,
2004
, “
Soft Robotics: What Cartesian Stiffness Can Obtain With Passively Compliant, Uncoupled Joints?
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28–Oct. 2, Vol.
4
, pp.
3295
3301
.
42.
Petit
,
F.
, and
Albu-Schäffer
,
A.
,
2011
, “
Cartesian Impedance Control for a Variable Stiffness Robot Arm
,”
IEEE
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
4180
4186
.
43.
Balucani
,
M.
,
Belfiore
,
N.
,
Crescenzi
,
R.
, and
Verotti
,
M.
,
2011
, “
The Development of a MEMS/NEMS-Based 3 D.O.F. Compliant Micro Robot
,”
Int. J. Mech. Control
,
12
(
1
), pp.
3
10
.
44.
Belfiore
,
N. P.
,
EmamiMeibodi
,
M.
,
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Nenzi
,
P.
,
2013
, “
Kinetostatic Optimization of a MEMS-Based Compliant 3 DOF Plane Parallel Platform
,”
IEEE 9th International Conference on Computational Cybernetics
(
ICCC 2013
), Tihany, Hungary, July 8–10, pp.
261
266
.
45.
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Belfiore
,
N.
,
2014
, “
MEMS-Based Conjugate Surfaces Flexure Hinge
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012301
.
46.
Cecchi
,
R.
,
Verotti
,
M.
,
Capata
,
R.
,
Dochshanov
,
A.
,
Broggiato
,
G. B.
,
Crescenzi
,
R.
,
Balucani
,
M.
,
Natali
,
S.
,
Razzano
,
G.
,
Lucchese
,
F.
,
Bagolini
,
A.
,
Bellutti
,
P.
,
Sciubba
,
E.
, and
Belfiore
,
N. P.
,
2015
, “
Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,”
Micromachines
,
6
(
11
), pp.
1710
1728
.
47.
Belfiore
,
N. P.
, and
Di Benedetto
,
A.
,
2000
, “
Connectivity and Redundancy in Spatial Robots
,”
Int. J. Rob. Res.
,
19
(
12
), pp.
1245
1261
.
48.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2008
,
Robotics: Modelling, Planning and Control
,
1st ed.
,
Springer
,
London
.
You do not currently have access to this content.