A manipulator control system, for which isotropic compliance holds in the Euclidean space , can be significantly simplified by means of diagonal decoupling. However, such simplification may introduce some limits to the region of the workspace where the sought property can be achieved. The present investigation reveals how to detect which peculiar subset, among four different classes, a given manipulator belongs to. The paper also introduces the concept of control gain ratio for each specific single-input/single-output joint control law in order to limit the maximum gain required to achieve the isotropic compliance condition.
References
1.
McCarthy
, J.
, 2011
, “21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,” ASME J. Mech. Rob.
, 3
(2
), p. 020201
.2.
Borràs
, J.
, and Dollar
, A.
, 2014
, “Actuation Torque Reduction in Parallel Robots Using Joint Compliance
,” ASME J. Mech. Rob.
, 6
(2
), p. 021006
.3.
Kao
, I.
, and Yang
, F.
, 2004
, “Stiffness and Contact Mechanics for Soft Fingers in Grasping and Manipulation
,” IEEE Trans. Rob. Autom.
, 20
(1
), pp. 132
–135
.4.
Zinn
, M.
, Khatib
, O.
, and Roth
, B.
, 2004
, “A New Actuation Approach for Human Friendly Robot Design
,” IEEE International Conference on Robotics and Automation
(ICRA’04
), New Orleans, LA, Apr. 26–May 1, Vol. 1
, pp. 249
–254
.5.
Sentis
, L.
, Park
, J.
, and Khatib
, O.
, 2010
, “Compliant Control of Multicontact and Center-of-Mass Behaviors in Humanoid Robots
,” IEEE Trans. Rob.
, 26
(3
), pp. 483
–501
.6.
Visser
, L.
, Carloni
, R.
, and Stramigioli
, S.
, 2011
, “Energy-Efficient Variable Stiffness Actuators
,” IEEE Trans. Rob.
, 27
(5
), pp. 865
–875
.7.
Li
, M.
, Wu
, H.
, and Handroos
, H.
, 2011
, “Static Stiffness Modeling of a Novel Hybrid Redundant Robot Machine
,” Fusion Eng. Des.
, 86
(9–11
), pp. 1838
–1842
.8.
Knapczyk
, J.
, and Ryska
, M.
, 2012
, “Stiffness Matrix Analysis of Six-Revolute Serial Manipulator
,” Acta Mech. Autom.
, 6
(2
), pp. 62
–65
.9.
Flacco
, F.
, De Luca
, A.
, Sardellitti
, I.
, and Tsagarakis
, N.
, 2012
, “On-Line Estimation of Variable Stiffness in Flexible Robot Joints
,” Int. J. Rob. Res.
, 31
(13
), pp. 1556
–1577
.10.
Chen
, H.
, and Liu
, Y.
, 2013
, “Robotic Assembly Automation Using Robust Compliant Control
,” Rob. Comput.-Integr. Manuf.
, 29
(2
), pp. 293
–300
.11.
Kim
, H. S.
, and Lipkin
, H.
, 2014
, “Stiffness of Parallel Manipulators With Serially Connected Legs
,” ASME J. Mech. Rob.
, 6
(3
), p. 031001
.12.
Hu
, B.
, Yu
, J.
, Lu
, Y.
, Sui
, C.
, and Han
, J.
, 2012
, “Statics and Stiffness Model of Serial-Parallel Manipulator Formed by k Parallel Manipulators Connected in Series
,” ASME J. Mech. Rob.
, 4
(2
), p. 021012
.13.
Huang
, S.
, and Schimmels
, J.
, 2011
, “Realization of an Arbitrary Planar Stiffness With a Simple Symmetric Parallel Mechanism
,” ASME J. Mech. Rob.
, 3
(4
), p. 041006
.14.
Palli
, G.
, Berselli
, G.
, Melchiorri
, C.
, and Vassura
, G.
, 2011
, “Design of a Variable Stiffness Actuator Based on Flexures
,” ASME J. Mech. Rob.
, 3
(3
), p. 034501
.15.
Portman
, V.
, 2011
, “Stiffness Evaluation of Machines and Robots: Minimum Collinear Stiffness Value Approach
,” ASME J. Mech. Rob.
, 3
(1
), p. 011015
.16.
Pottmann
, H.
, Peternell
, M.
, and Ravani
, B.
, 1999
, “An Introduction to Line Geometry With Applications
,” Comput.-Aided Des.
, 31
(1
), pp. 3
–16
.17.
Wolf
, A.
, and Shoham
, M.
, 2003
, “Investigation of Parallel Manipulators Using Linear Complex Approximation
,” ASME J. Mech. Des.
, 125
(3
), pp. 564
–572
.18.
Forsythe
, G. E.
, and Moler
, C. B.
, 1967
, Computer Solution of Linear Algebraic Systems
, Vol. 7
, Prentice-Hall
, Upper Saddle River, NJ
.19.
Vinogradov
, I. B.
, Kobrinski
, A. E.
, Stepanenko
, Y. E.
, and Tives
, L. T.
, 1971
, “Details of Kinematics of Manipulators With the Method of Volumes
,” Mekhanika Mashin
, 1
(5
), pp. 5
–16
.20.
Kumar
, A.
, and Waldron
, K. J.
, 1981
, “The Workspace of a Mechanical Manipulator
,” ASME J. Mech. Des.
, 103
(3
), pp. 665
–672
.21.
Salisbury
, J.
, and Craig
, J.
, 1982
, “Articulated Hands: Force Control and Kinematic Issues
,” Int. J. Rob. Res.
, 1
(1
), pp. 4
–17
.22.
Yoshikawa
, T.
, 1984
, “Analysis and Control of Robot Manipulators With Redundancy
,” Robotics Research: The First International Symposium
, M. Brady and R. Paul, eds., MIT Press, Cambridge, MA, pp. 735–747.23.
Paul
, R. P.
, and Stevenson
, C. N.
, 1983
, “Kinematics of Robot Wrists
,” Int. J. Rob. Res.
, 2
(1
), pp. 31
–38
.24.
Yang
, D. C.
, and Lai
, Z. C.
, 1985
, “On the Dexterity of Robotic Manipulators—Service Angle
,” ASME J. Mech., Transm., Autom. Des.
, 107
(5
), pp. 262
–270
.25.
Yoshikawa
, T.
, 1985
, “Manipulability of Robotic Mechanisms
,” Int. J. Rob. Res.
, 4
(2
), pp. 3
–9
.26.
Klein
, C. A.
, and Blaho
, B. E.
, 1987
, “Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,” Int. J. Rob. Res.
, 6
(2
), pp. 72
–83
.27.
Klein
, C. A.
, and Miklos
, T. A.
, 1991
, “Spatial Robotic Isotropy
,” Int. J. Rob. Res.
, 10
(4
), pp. 426
–437
.28.
Kim
, J. O.
, and Khosla
, K.
, 1991
, “Dexterity Measures for Design and Control of Manipulators
,” IEEE/RSJ
International Workshop on Intelligent Robots and Systems
, Osaka, Japan, Nov. 3–5, pp. 758
–763
.29.
Angeles
, J.
, and López-Cajún
, C. S.
, 1992
, “Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,” Int. J. Rob. Res.
, 11
(6
), pp. 560
–571
.30.
Angeles
, J.
, 1992
, “The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,” Int. J. Rob. Res.
, 11
(3
), pp. 196
–201
.31.
Park
, F. C.
, and Brockett
, R. W.
, 1994
, “Kinematic Dexterity of Robotic Mechanisms
,” Int. J. Rob. Res.
, 13
(1
), pp. 1
–15
.32.
Park
, F. C.
, 1995
, “Optimal Robot Design and Differential Geometry
,” ASME J. Mech. Des.
, 117
, pp. 87
–92
.33.
Stocco
, L.
, Salcudean
, S. E.
, and Sassani
, F.
, 1997
, “Mechanism Design for Global Isotropy With Applications to Haptic Interfaces
,” ASME Winter Annual Meeting, Dallas, TX
, Nov. 15–17, Vol. 61
, pp. 115–122.
34.
Stocco
, L.
, Salcudean
, S. E.
, and Sassani
, F.
, 1998
, “Fast Constrained Global Minimax Optimization of Robot Parameters
,” Robotica
, 16
(6
), pp. 595
–605
.35.
Gosselin
, C.
, and Angeles
, J.
, 1991
, “A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,” ASME J. Mech. Des.
, 113
(3
), pp. 220
–226
.36.
Gogu
, G.
, 2004
, “Structural Synthesis of Fully-Isotropic Translational Parallel Robots Via Theory of Linear Transformation
,” Eur. J. Mech.-A/Solids
, 23
(2
), pp. 1021
–1039
.37.
Belfiore
, N.
, Verotti
, M.
, and Consorti
, L.
, 2010
, “Comparative Analysis of Isotropy Indices in RR and RRP Arms
,” Int. J. Mech. Control
, 11
(1
), pp. 3
–12
.38.
Liu
, H.
, Huang
, T.
, and Chetwynd
, D.
, 2011
, “A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,” IEEE Trans. Rob.
, 27
(1
), pp. 150
–156
.39.
Belfiore
, N.
, Di Giamberardino
, P.
, Rudas
, I.
, and Verotti
, M.
, 2011
, “Isotropy in Any RR Planar Dyad Under Active Joint Stiffness Regulation
,” Int. J. Mech. Control
, 12
(1
), pp. 75
–81
.40.
Belfiore
, N. P.
, Verotti
, M.
, Di Giamberardino
, P.
, and Rudas
, I. J.
, 2012
, “Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space
,” ASME J. Mech. Rob.
, 4
(4
), p. 041010
.41.
Albu-Schäffer
, A.
, Fischer
, M.
, Schreiber
, G.
, Schoeppe
, F.
, and Hirzinger
, G.
, 2004
, “Soft Robotics: What Cartesian Stiffness Can Obtain With Passively Compliant, Uncoupled Joints?
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Sendai, Japan, Sept. 28–Oct. 2, Vol. 4
, pp. 3295
–3301
.42.
Petit
, F.
, and Albu-Schäffer
, A.
, 2011
, “Cartesian Impedance Control for a Variable Stiffness Robot Arm
,” IEEE
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp. 4180
–4186
.43.
Balucani
, M.
, Belfiore
, N.
, Crescenzi
, R.
, and Verotti
, M.
, 2011
, “The Development of a MEMS/NEMS-Based 3 D.O.F. Compliant Micro Robot
,” Int. J. Mech. Control
, 12
(1
), pp. 3
–10
.44.
Belfiore
, N. P.
, EmamiMeibodi
, M.
, Verotti
, M.
, Crescenzi
, R.
, Balucani
, M.
, and Nenzi
, P.
, 2013
, “Kinetostatic Optimization of a MEMS-Based Compliant 3 DOF Plane Parallel Platform
,” IEEE 9th International Conference on Computational Cybernetics
(ICCC 2013
), Tihany, Hungary, July 8–10, pp. 261
–266
.45.
Verotti
, M.
, Crescenzi
, R.
, Balucani
, M.
, and Belfiore
, N.
, 2014
, “MEMS-Based Conjugate Surfaces Flexure Hinge
,” ASME J. Mech. Des.
, 137
(1
), p. 012301
.46.
Cecchi
, R.
, Verotti
, M.
, Capata
, R.
, Dochshanov
, A.
, Broggiato
, G. B.
, Crescenzi
, R.
, Balucani
, M.
, Natali
, S.
, Razzano
, G.
, Lucchese
, F.
, Bagolini
, A.
, Bellutti
, P.
, Sciubba
, E.
, and Belfiore
, N. P.
, 2015
, “Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,” Micromachines
, 6
(11
), pp. 1710
–1728
.47.
Belfiore
, N. P.
, and Di Benedetto
, A.
, 2000
, “Connectivity and Redundancy in Spatial Robots
,” Int. J. Rob. Res.
, 19
(12
), pp. 1245
–1261
.48.
Siciliano
, B.
, Sciavicco
, L.
, Villani
, L.
, and Oriolo
, G.
, 2008
, Robotics: Modelling, Planning and Control
, 1st ed., Springer
, London
.Copyright © 2016 by ASME
You do not currently have access to this content.