This paper deals with the problem of integrated joint type and dimensional synthesis of planar four-bar and six-bar linkages, which could contain both revolute (R) and prismatic (P) joints, for guiding through five specified task positions of the end-effector. In a recent work, we developed a simple algorithm for analyzing a set of given task positions to determine all feasible planar dyads with revolute and/or prismatic joints that can be used to guide through the given positions. This paper extends this algorithm to the integrated joint type and dimensional synthesis of Watt I and II and Stephenson I, II, and III six-bar linkages that contain both R- and P-joints. In the process, we developed a new classification for planar six-bar linkages according to whether the end-effector can be constrained by two dyads (type I), one dyad (type II), or no dyad (type III). In the end, we demonstrate this task-driven synthesis approach with three examples including a novel six-bar linkage for lifting an individual with age disability from seating position to standing position.

References

References
1.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North-Holland
,
Amsterdam, The Netherlands
.
2.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT
,
Cambridge, MA
.
3.
Angeles
,
J.
, and
Bai
,
S.
,
2005
, “
Some Special Cases of the Burmester Problem for Four and Five Poses
,”
ASME
Paper No. DETC2005-84871.
4.
Bourrelle
,
J.
,
Chen
,
C.
,
Caro
,
S.
, and
Angeles
,
J.
,
2007
, “
Graphical User Interface to Solve the Burmester Problem
,” 12th
IFToMM
World Congress
, Besancon, France, June 17–20.
5.
Chen
,
C.
,
Bai
,
S.
, and
Angeles
,
J.
,
2008
, “
A Comprehensive Solution of the Classical Burmester Problem
,”
Trans. CSME
,
32
(
2
), pp.
137
154
.
6.
Chen
,
C.
,
Bai
,
S.
, and
Angeles
,
J.
,
2008
, “
The Synthesis of Dyads With One Prismatic Joint
,”
ASME J. Mech. Des.
,
130
(
3
), p.
034501
.
7.
Chase
,
T. R.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
,
1987
, “
Triad Synthesis for up to Five Design Positions With Application to the Design of Arbitrary Planar Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
4
), pp.
426
434
.
8.
Schreiber
,
H.
,
Meer
,
K.
, and
Schmitt
,
B. J.
,
2002
, “
Dimensional Synthesis of Planar Stephenson Mechanisms for Motion Generation Using Circlepoint Search and Homotopy Methods
,”
Mech. Mach. Theory
,
37
(
7
), pp.
717
737
.
9.
Lin
,
C. S.
, and
Erdman
,
A. G.
,
1987
, “
Dimensional Synthesis of Planar Triads for Six Positions
,”
Mech. Mach. Theory
,
22
(
5
), pp.
411
419
.
10.
Soh
,
G.-S.
, and
McCarthy
,
J.
,
2008
, “
The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,”
Mech. Mach. Theory
,
43
(
2
), pp.
160
170
.
11.
Bawab
,
S.
,
Kinzel
,
G. L.
, and
Waldron
,
K. J.
,
1996
, “
Rectified Synthesis of Six-Bar Mechanisms With Well-Defined Transmission Angles for Four-Position Motion Generation
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
377
383
.
12.
Mirth
,
J. A.
, and
Chase
,
T. R.
,
1995
, “
Circuit Rectification for Four Precision Position Synthesis of Stephenson Six-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
644
646
.
13.
Zhao
,
P.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2013
, “
Task Driven Unified Synthesis of Planar Four-Bar and Six-Bar Linkages With Revolute and Prismatic Joints for Five Position Synthesis
,”
ASME
Paper No. DETC2013-13168.
14.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech., Transm., Autom. Des.
,
105
(
3
), pp.
460
467
.
15.
Ravani
,
B.
, and
Roth
,
B.
,
1984
, “
Mappings of Spatial Kinematics
,”
ASME J. Mech., Transm., Autom. Des.
,
106
(
3
), pp.
341
347
.
16.
Larochelle
,
P.
,
1996
, “
Synthesis of Planar RR Dyads by Constraint Manifold Projection
,”
ASME
Paper No. DETC/MECH-1187.
17.
Larochelle
,
P.
,
2003
, “
Approximate Motion Synthesis of Open and Closed Chains Via Parametric Constraint Manifold Fitting: Preliminary Results
,”
ASME
Paper No. DETC2003/DAC-48814.
18.
Hayes
,
M. J. D.
, and
Murray
,
P. J.
,
2002
, “
Solving Burmester Problem Using Kinematic Mapping
,”
ASME
Paper No. DETC/CIE2002/DAC-1234.
19.
Hayes
,
M. J. D.
,
Luu
,
T.
, and
Chang
,
X.-W.
,
2004
, “
Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisms
,”
On Advances in Robot Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
41
48
.
20.
Brunnthaler
,
K.
,
Pfurner
,
M.
, and
Husty
,
M.
,
2006
, “
Synthesis of Planar Four-Bar Mechanisms
,”
Trans. CSME
,
30
(
2
), pp.
297
313
.
21.
Husty
,
M. L.
,
Pfurner
,
M.
,
Schrocker
,
H.-P.
, and
Brunnthaler
,
K.
,
2007
, “
Algebraic Methods in Mechanism Analysis and Synthesis
,”
Robotica
,
25
, pp.
661
675
.
22.
Ge
,
Q. J.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Li
,
X.
,
2012
, “
A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041003
.
23.
Ge
,
Q. J.
,
Zhao
,
P.
, and
Purwar
,
A.
,
2013
, “
A Task Driven Approach to Simultaneous Type and Dimensional Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of Quadrics
,”
ASME
Paper No. IDETC2013-12977.
24.
Li
,
X.
,
Ge
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2015
, “
A Unified Algorithm for Analysis and Simulation of Planar Four-Bar Motions Defined With R- and P-Joints
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011014
.
25.
Schrocker
,
H.-P.
,
Husty
,
M. L.
, and
McCarthy
,
J. M.
,
2007
, “
Kinematic Mapping Based Assembly Mode Evaluation of Planar Four-Bar Mechanisms
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
924
929
.
26.
Ploutz-Snyder
,
L. L.
,
Manini
,
T.
,
Ploutz-Snyder
,
R. J.
, and
Wolf
,
D. A.
,
2002
, “
Functionally Relevant Thresholds of Quadriceps Femoris Strength
,”
J. Gerontol., Ser. A
,
57
(
4
), pp.
B144
B152
.
27.
Dawson
,
D.
,
Hendershot
,
G.
, and
Fulton
,
J.
,
1987
, “
Aging in the Eighties: Functional Limitations of Individuals Age 65 and Over
,”
National Center for Health Statistics Advance Data
,
U.S. Department of Health and Human Services
,
Atlanta, GA
, Vol.
133
, pp.
1
11
.
You do not currently have access to this content.