Compliant mechanisms achieve motion utilizing deformation of elastic members. However, analysis of compliant mechanisms for large deflections remains a significant challenge. In this paper, a three-spring revolute–prismatic–revolute (RPR) pseudorigid-body (PRB) model for short beams used in soft joints made of elastomer material is presented. These soft joints differ from flexure-based compliant joints in which they demonstrate significant axial elongation effects upon tip loadings. The traditional PRB models based on long thin Euler beams failed to capture this elongation effect. To overcome this difficulty, a model approximation based on the Timoshenko beam theory has been derived. These equations are utilized to calculate the tip deflection for a large range of loading conditions. An optimization process is then carried out to determine the optimal values of the parameters of the PRB model for a large range of tip loads. An example based on a robotic grasper finger is provided to demonstrate how the model can be used in analysis of such a system. This model will provide a simple approach for the analysis of compliant robotic mechanisms.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
2.
Quigley
,
M.
,
Asbeck
,
A.
, and
Ng
,
A.
,
2011
, “
A Low-Cost Compliant 7-DOF Robotic Manipulator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
6051
6058
.
3.
Dollar
,
A.
, and
Howe
,
R.
,
2006
, “
A Robust Compliant Grasper Via Shape Deposition Manufacturing
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
154
161
.
4.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
5.
Zhou
,
L.
,
Marras
,
A. E.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2014
, “
DNA Origami Compliant Nanostructures With Tunable Mechanical Properties
,”
ACS Nano
,
8
(
1
), pp.
27
34
.
6.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
7.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
8.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
9.
Tolou
,
N.
, and
Herder
,
J. L.
,
2009
, “
A Semianalytical Approach to Large Deflections in Compliant Beams Under Point Load
,”
Math. Probl. Eng.
,
2009
, p.
910896
.
10.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
11.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
12.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
13.
Dado
,
M. H.
,
2001
, “
Variable Parametric Pseudo-Rigid-Body Model for Large-Deflection Beams With End Loads
,”
Int. J. Non-Linear Mech.
,
36
(
7
), pp.
1123
1133
.
14.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
15.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2013
, “
Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041017
.
16.
Timoshenko
,
S.
,
1921
, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag. Ser. 6
,
41
(
245
), pp.
744
746
.
17.
Timoshenko
,
S.
,
1922
, “
On the Transverse Vibrations of Bars of Uniform Cross-Section
,”
Philos. Mag. Ser. 6
,
43
(
253
), pp.
125
131
.
18.
Cham
,
J. G.
,
Bailey
,
S. A.
,
Clark
,
J. E.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
,
2002
, “
Fast and Robust: Hexapedal Robots Via Shape Deposition Manufacturing
,”
Int. J. Rob. Res.
,
21
(
10–11
), pp.
869
882
.
19.
Chaisomphob
,
T.
,
Nishino
,
F.
,
Hasegawa
,
A.
, and
Alygamalaly
,
A.-S.
,
1986
, “
An Elastic Finite Displacement Analysis of Plane Beams With and Without Shear Deformation
,”
Doboku Gakkai Ronbunshu
,
1986
(
368
), pp.
169
177
.
20.
Senjanovic
,
I.
, and
Vladimir
,
N.
,
2013
, “
Physical Insight Into Timoshenko Beam Theory and Its Modification With Extension
,”
Struct. Eng. Mech.
,
48
(
4
), pp.
519
545
.
21.
Ma
,
H.
,
Gao
,
X.-L.
, and
Reddy
,
J.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3379
3391
.
22.
Hutchinson
,
J. R.
,
2000
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
.
23.
Jensen
,
J. J.
,
1983
, “
On the Shear Coefficient in Timoshenko's Beam Theory
,”
J. Sound Vib.
,
87
(
4
), pp.
621
635
.
24.
Beer
, and
Dewolf
,
J.
,
2004
,
Mechanics of Materials (In SI Units)
,
Tata McGraw-Hill Education
, New York.
25.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
.
26.
Physics Stack Exchange, 2012, “
Poisson Effect Formula for Large Deformations
,” Stack Exchange Network, accessed March 6, 2015, http://physics.stackexchange.com/questions/28056/poisson-effect-formula-for-large-deformations
27.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
28.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E. G.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the Lambert W Function
,”
Adv. Comput. Math.
,
5
(
1
), pp.
329
359
.
29.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
, Philadelphia, PA.
30.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2015
, “
A Parameter Optimization Framework for Determining the Pseudo-Rigid-Body Model of Cantilever-Beams
,”
Precis. Eng.
,
40
, pp.
46
54
.
31.
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2012
, “
The Smooth Curvature Model: An Efficient Representation of Euler-Bernoulli Flexures as Robot Joints
,”
IEEE Trans. Robotics
,
28
(4), pp.
761
772
.
You do not currently have access to this content.