This paper presents studies of an upper body assistive device designed to aid human load carriage. The two primary functions of the device are: (i) distributing the backpack load between the shoulders and the waist and (ii) reducing the dynamic load of a backpack on the human body during walking. These functions are targeted to relieve stress applied on the shoulders and the back, and also reduce the dynamic loads transferred to the lower limbs during walking. These functions are achieved by incorporating two modules—passive and active—within a custom fitted shirt integrated with motion/force sensors, actuators, and a real-time controller. The relevant modeling and controller design are presented for dynamic load compensation. Preliminary evaluation of the device was first performed on a single subject, followed by a pilot study with ten healthy subjects walking on a treadmill with a backpack. Results show that the device can effectively transfer the load from the shoulders to the waist and also reduce the dynamic loads induced by the backpack during walking. Reduction in peak and total normal ground reaction forces, leg muscle activations, and oxygen consumptions was observed with the device. This suggests that the device can potentially reduce the risk of musculoskeletal injuries and fatigue on the lower limbs associated with carrying heavy loads and provide some metabolic benefits.

References

References
1.
Knapik
,
J.
,
Harman
,
E.
, and
Reynolds
,
K.
,
1996
, “
Load Carriage Using Packs: A Review of Physiological, Biomechanical and Medical Aspects
,”
Appl. Ergon.
,
27
(
3
), pp.
207
216
.
2.
Knapik
,
J.
,
Reynolds
,
K.
, and
Harman
,
E.
,
2004
, “
Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects
,”
Mil. Med.
,
169
(
1
), pp.
45
56
.
3.
Holewijn
,
M.
,
1990
, “
Physiological Strain due to Load Carrying
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
61
(
3
), pp.
237
245
.
4.
Reynolds
,
K.
,
Kaszuba
,
J.
,
Mello
,
R.
, and
Patton
,
J.
,
1990
, “
Prolonged Treadmill Load Carriage: Acute Injuries and Changes in Foot Anthropometry
,” U.S. Army Research Institute of Environmental Medicine, Natick, MA, DTIC Document,
Technical Report No. T1-91
.
5.
Quesada
,
P.
,
Mengelkoch
,
L.
,
Hale
,
R.
, and
Simon
,
S.
,
2000
, “
Biomechanical and Metabolic Effects of Varying Backpack Loading on Simulated Marching
,”
Ergonomics
,
43
(
3
), pp.
293
309
.
6.
Lloyd
,
R.
, and
Cooke
,
C. B.
,
2000
, “
The Oxygen Consumption Associated With Unloaded Walking and Load Carriage Using Two Different Backpack Designs
,”
Eur. J. Appl. Physiol.
,
81
(
6
), pp.
486
492
.
7.
Bastien
,
G.
,
Williems
,
P.
,
Schepens
,
B.
, and
Heglund
,
N.
,
2005
, “
Effect of Load and Speed on the Energetic Cost of Human Walking
,”
Eur. J. Appl. Physiol.
,
94
(
1
), pp.
76
83
.
8.
Abe
,
D.
,
Muraki
,
S.
, and
Yasukouch
,
A.
,
2008
, “
Ergonomic Effects of Load Carriage on Energy Cost of Gradient Walking
,”
Appl. Ergon.
,
39
(
2
), pp.
144
149
.
9.
Hong
,
Y.
,
Li
,
J.
, and
Fong
,
D.
,
2008
, “
Effect of Prolonged Walking With Backpack Loads on Trunk Muscle Activity and Fatigue in Children
,”
J. Electromyogr. Kinesiology
,
18
(
6
), pp.
990
996
.
10.
Al-Khabbaz
,
Y.
,
Shimada
,
T.
, and
Hasegawa
,
M.
,
2008
, “
The Effect of Backpack Heaviness on Trunk-Lower Extremity Muscle Activities and Trunk Posture
,”
Gait Posture
,
28
(
2
), pp.
297
302
.
11.
LaFiandra
,
M.
,
Wagenaar
,
R.
,
Holt
,
K.
, and
Obusek
,
J.
,
2003
, “
How Do Load Carriage and Walking Speed Influence Trunk Coordination and Stride Parameters?
,”
J. Biomech.
,
36
(
1
), pp.
87
95
.
12.
Attwells
,
R.
,
Birrell
,
S.
,
Hooper
,
R.
, and
Mansfield
,
N.
,
2006
, “
Influence of Carrying Heavy Loads on Soldiers Posture, Movements and Gait
,”
Ergonomics
,
49
(
14
), pp.
1527
1537
.
13.
Birrell
,
S.
,
Hooper
,
R.
, and
Haslam
,
R.
,
2007
, “
The Effect of Military Load Carriage on Ground Reaction Forces
,”
Gait Posture
,
26
(
4
), pp.
611
614
.
14.
Tilbury-Davis
,
D.
, and
Hooper
,
R.
,
1999
, “
The Kinetic and Kinematic Effects of Increasing Load Carriage Upon the Lower Limb
,”
Hum. Mov. Sci.
,
18
(
5
), pp.
693
700
.
15.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
University of Waterloo Press
,
Canada
.
16.
Harman
,
E.
,
Han
,
K.
,
Frykman
,
P.
,
Johnson
,
M.
,
Russell
,
F.
, and
Rosenstein
,
M.
,
1992
, “
The Effects on Gait Timing, Kinetics, and Muscle Activity of Various Loads Carried on the Back: 774
,”
Med. Sci. Sports Exercise
,
24
(
5
), p.
S129
.
17.
Ghori
,
G.
, and
Luckwill
,
R.
,
1985
, “
Responses of the Lower Limb to Load Carrying in Walking Man
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
54
(
2
), pp.
145
150
.
18.
Ren
,
L.
,
Jones
,
R.
, and
Howard
,
D.
,
2005
, “
Dynamic Analysis of Load Carriage Biomechanics During Level Walking
,”
J. Biomech.
,
38
(
4
), pp.
853
863
.
19.
Rome
,
L.
,
Flynn
,
L.
, and
Yoo
,
T.
,
2006
, “
Biomechanics: Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.
20.
Lafiandra
,
M.
, and
Harman
,
E.
,
2004
, “
The Distribution of Forces Between the Upper and Lower Back During Load Carriage
,”
Med. Sci. Sports Exercise
,
36
(
3
), pp.
460
467
.
21.
Ortega
,
J.
, and
Farley
,
C.
,
2005
, “
Minimizing Center of Mass Vertical Movement Increases Metabolic Cost in Walking
,”
J. Appl. Physiol.
,
99
(
6
), pp.
2099
2107
.
22.
Neptune
,
R.
,
Zajac
,
F.
, and
Kautz
,
S.
,
2004
, “
Muscle Mechanical Work Requirements During Normal Walking: The Energetic Cost of Raising the Body's Center-of-Mass Is Significant
,”
J. Biomech.
,
37
(
6
), pp.
817
825
.
23.
Zoss
,
A.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
.
24.
Kazerooni
,
H.
,
Steger
,
R.
, and
Huang
,
L.
,
2006
, “
Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
Int. J. Rob. Res.
,
25
(
5
), pp.
561
573
.
25.
Tierney
,
G.
,
Stratton
,
G.
, and
Tzeng
,
M.
,
2012
, “
Design and Optimization of an Exospine Structure Utilizing Lightweight Composites
,”
Society for the Advancement of Material and Process Engineering Conference
, SAMPE 2012, Baltimore, MD, May 21–24, pp.
1
9
.
26.
Park
,
J.
,
Jin
,
X.
, and
Agrawal
,
S.
,
2015
, “
Second Spine: Upper Body Assistive Device for Human Load Carriage
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011012
.
27.
Park
,
J.
,
Zanotto
,
D.
,
Vashista
,
V.
,
Xin
,
J.
,
Stegall
,
P.
, and
Agrawal
,
S.
,
2014
, “
Second Spine: A Device to Relieve Stresses on the Upper Body During Loaded Walking
,” 5th IEEE
RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics
, BioRob 2014, Sao Paulo, Brazil, Aug. 12–15, pp.
689
694
.
28.
Devroey
,
C.
,
Jonkers
,
I.
,
de Becker
,
A.
,
Lenaerts
,
G.
, and
Spaepen
,
A.
,
2007
, “
Evaluation of the Effect of Backpack Load and Position During Standing and Walking Using Biomechanical, Physiological and Subjective Measures
,”
Ergonomics
,
50
(
5
), pp.
728
742
.
29.
Sugar
,
T.
,
Bates
,
A.
,
Holgate
,
M.
,
Kerestes
,
J.
,
Mignolet
,
M.
,
New
,
P.
,
Ramachandran
,
R.
,
Redkar
,
S.
, and
Wheeler
,
C.
,
2015
, “
Limit Cycles to Enhance Human Performance Based on Phase Oscillators
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011001
.
30.
Park
,
J.
,
Stegall
,
P.
,
Agrawal
,
S.
,
Yarlagadda
,
S.
,
Tierney
,
J.
,
Sharma
,
S.
, and
Gillespie
,
J.
,
2015
, “
Wearable Upper Body Suit for Assisting Human Load Carriage
,”
ASME
Paper No. DETC2015-47973.
31.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.
You do not currently have access to this content.