In this paper, we introduce a strategy for the design and computational analysis of compliant DNA origami mechanisms (CDOMs), which are compliant nanomechanisms fabricated via DNA origami self-assembly. The rigid, compliant, and flexible parts are constructed by bundles of many double-stranded DNA (dsDNA) helices, bundles of a few dsDNA helices or a single dsDNA helix, and single-stranded DNA (ssDNA) strands, respectively. Similar to its macroscopic counterparts, a CDOM generates its motion via deformation of at least one structural member. During the motion, strain energy is stored and released in the compliant components. Therefore, these CDOMs have the advantage of suppressing thermal fluctuations due to the internal mechanical energy barrier for motion. Here, we show that classic pseudorigid-body (PRB) models for compliant mechanism are successfully employed to the analysis of these DNA origami nanomechanisms and can serve to guide the design and analysis method. An example of compliant joint and a bistable four-bar CDOM fabricated with DNA origami are presented.

References

References
1.
Rothemund
,
P. W. K.
,
2006
, “
Folding DNA to Create Nanoscale Shapes and Patterns
,”
Nature
,
440
(
7082
), pp.
297
302
.
2.
Douglas
,
S. M.
,
Dietz
,
H.
,
Liedl
,
T.
,
Högberg
,
B.
,
Graf
,
F.
, and
Shih
,
W. M.
,
2009
, “
Self-Assembly of DNA Into Nanoscale Three-Dimensional Shapes
,”
Nature
,
459
(
7245
), pp.
414
418
.
3.
Castro
,
C. E.
,
Kilchherr
,
F.
,
Kim
,
D.-N.
,
Shiao
,
E. L.
,
Wauer
,
T.
,
Wortmann
,
P.
,
Bathe
,
M.
, and
Dietz
,
H.
,
2011
, “
A Primer to Scaffolded DNA Origami
,”
Nat. Methods
,
8
(
3
), pp.
221
229
.
4.
Kim
,
D.-N.
,
Kilchherr
,
F.
,
Dietz
,
H.
, and
Bathe
,
M.
,
2012
, “
Quantitative Prediction of 3D Solution Shape and Flexibility of Nucleic Acid Nanostructures
,”
Nucleic Acids Res.
,
40
(
7
), pp.
2862
2868
.
5.
Dietz
,
H.
,
Douglas
,
S. M.
, and
Shih
,
W. M.
,
2009
, “
Folding DNA Into Twisted and Curved Nanoscale Shapes
,”
Science
,
325
(
5941
), pp.
725
730
.
6.
Han
,
D.
,
Pal
,
S.
,
Nangreave
,
J.
,
Deng
,
Z.
,
Liu
,
Y.
, and
Yan
,
H.
,
2011
, “
DNA Origami With Complex Curvatures in Three-Dimensional Space
,”
Science
,
332
(
6027
), pp.
342
346
.
7.
Liedl
,
T.
,
Högberg
,
B.
,
Tytell
,
J.
,
Ingber
,
D. E.
, and
Shih
,
W. M.
,
2010
, “
Self-Assembly of 3D Prestressed Tensegrity Structures From DNA
,”
Nat. Nanotechnol.
,
5
(
7
), pp.
520
524
.
8.
Andersen
,
E. S.
,
Dong
,
M.
,
Nielsen
,
M. M.
,
Jahn
,
K.
,
Subramani
,
R.
,
Mamdouh
,
W.
,
Golas
,
M. M.
,
Sander
,
B.
,
Stark
,
H.
,
Oliveira
,
C. L. P.
,
Pedersen
,
J. S.
,
Birkedal
,
V.
,
Besenbacher
,
F.
,
Gothelf
,
K. V.
, and
Kjems
,
J.
,
2009
, “
Self-Assembly of a Nanoscale DNA Box With a Controllable Lid
,”
Nature
,
459
(
7243
), pp.
73
76
.
9.
Marras
,
A. E.
,
Zhou
,
L.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2015
, “
Programmable Motion of DNA Origami Mechanisms
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
3
), pp.
713
718
.
10.
Castro
,
C. E.
,
Su
,
H.-J.
,
Marras
,
A. E.
,
Zhou
,
L.
, and
Johnson
,
J.
,
2015
, “
Mechanical Design of DNA Nanostructures
,”
Nanoscale
,
7
(
14
), pp.
5913
5921
.
11.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
12.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
13.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
14.
Zhou
,
L.
,
Marras
,
A. E.
,
Su
,
H.
, and
Castro
,
C. E.
,
2015
, “
Direct Design of an Energy Landscape With Bistable DNA Origami Mechanisms
,”
Nano Lett.
,
14
(
10
), pp.
5740
5747
.
15.
Zhou
,
L.
,
Marras
,
A. E.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2014
, “
DNA Origami Compliant Nanostructures With Tunable Mechanical Properties
,”
ACS Nano
,
8
(
1
), pp.
27
34
.
16.
Marko
,
J. F.
, and
Siggia
,
E. D.
,
1995
, “
Stretching DNA
,”
Macromolecules
,
28
(
26
), pp.
8759
8770
.
17.
Tinland
,
B.
,
Pluen
,
A.
,
Sturm
,
J.
, and
Weill
,
G.
,
1997
, “
Persistence Length of Single-Stranded DNA
,”
Macromolecules
,
30
(
19
), pp.
5763
5765
.
18.
Boal
,
D.
, and
Boal
,
D. H.
,
2012
,
Mechanics of the Cell
,
Cambridge University Press
,
New York
.
19.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
You do not currently have access to this content.