Herein, we discuss the folding of highly compliant origami structures—“Soft Origami.” There are benefits to be had in folding compliant sheets (which cannot self-guide their motion) rather than conventional rigid origami. Example applications include scaffolds for artificial tissue generation and foldable substrates for flexible electronic assemblies. Highly compliant origami has not been contemplated by existing theory, which treats origami structures largely as rigid or semirigid mechanisms with compliant hinges—“mechanism-reliant origami.” We present a quantitative metric—the origami compliance metric (OCM)—that aids in identifying proper modeling of a homogeneous origami structure based upon the compliance regime it falls into (soft, hybrid, or mechanism-reliant). We discuss the unique properties, applications, and design drivers for practical implementation of Soft Origami. We detail a theory of proper constraint by which an ideal soft structure's number of degrees-of-freedom may be approximated as 3n, where n is the number of vertices of the fold pattern. Buckling and sagging behaviors in very compliant structures can be counteracted with the application of tension; we present a method for calculating the tension force required to reduce sagging error below a user-prescribed value. Finally, we introduce a concept for a scalable process in which a few actuators and stretching membranes may be used to simultaneously fold many origami substructures that share common degrees-of-freedom.

References

References
1.
Siegel
,
A. C.
,
Phillips
,
S. T.
,
Dickey
,
M. D.
,
Lu
,
N.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2010
, “
Foldable Printed Circuit Boards on Paper Substrates
,”
Adv. Funct. Mater.
,
20
(
1
), pp.
28
35
.
2.
Chen
,
A. A.
,
Thomas
,
D. K.
,
Ong
,
L. L.
,
Schwartz
,
R. E.
,
Golub
,
T. R.
, and
Bhatia
,
S. N.
,
2011
, “
Humanized Mice With Ectopic Artificial Liver Tissues
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
29
), pp.
11842
11847
.
3.
Levenberg
,
S.
,
Rouwkema
,
J.
,
Macdonald
,
M.
,
Garfein
,
E. S.
,
Kohane
,
D. S.
,
Darland
,
D. C.
,
Marini
,
R.
,
van Blitterswijk
,
C. A.
,
Mulligan
,
R. C.
,
D'Amore
,
P. A.
, and
Langer
,
R.
,
2005
, “
Engineering Vascularized Skeletal Muscle Tissue
,”
Nat. Biotechnol.
,
23
(
7
), pp.
879
884
.
4.
Stevens
,
K. R.
,
Kreutziger
,
K. L.
,
Dupras
,
S. K.
,
Korte
,
F. S.
,
Regnier
,
M.
,
Muskheli
,
V.
,
Nourse
,
M. B.
,
Bendixen
,
K.
,
Reinecke
,
H.
, and
Murry
,
C. E.
,
2009
, “
Physiological Function and Transplantation of Scaffold-Free and Vascularized Human Cardiac Muscle Tissue
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
39
), pp.
16568
16573
.
5.
Glicklis
,
R.
,
Merchuk
,
J. C.
, and
Cohen
,
S.
,
2004
, “
Modeling Mass Transfer in Hepatocyte Spheroids Via Cell Viability, Spheroid Size, and Hepatocellular Functions
,”
Biotechnol. Bioeng.
,
86
(
6
), pp.
672
680
.
6.
Wood
,
F. M.
,
Stoner
,
M. L.
,
Fowler
,
B. V.
, and
Fear
,
M. W.
,
2007
, “
The Use of a Non-Cultured Autologous Cell Suspension and Integra® Dermal Regeneration Template to Repair Full-Thickness Skin Wounds in a Porcine Model: A One-Step Process
,”
Burns
,
33
(
6
), pp.
693
700
.
7.
Atala
,
A.
,
Bauer
,
S. B.
,
Soker
,
S.
,
Yoo
,
J. J.
, and
Retik
,
A. B.
,
2006
, “
Tissue-Engineered Autologous Bladders for Patients Needing Cystoplasty
,”
Lancet
,
367
(
9518
), pp.
1241
1246
.
8.
Macchiarini
,
P.
,
Jungebluth
,
P.
,
Go
,
T.
,
Asnaghi
,
M. A.
,
Rees
,
L. E.
,
Cogan
,
T. A.
,
Dodson
,
A.
,
Martorell
,
J.
,
Bellini
,
S.
,
Parnigotto
,
P. P.
,
Dickinson
,
S. C.
,
Hollander
,
A. P.
,
Mantero
,
S.
,
Conconi
,
M. T.
, and
Birchall
,
M. A.
,
2008
, “
Clinical Transplantation of a Tissue-Engineered Airway
,”
Lancet
,
372
(
9655
), pp.
2023
2030
.
9.
Shin'oka
,
T.
,
Imai
,
Y.
, and
Ikada
,
Y.
,
2001
, “
Transplantation of a Tissue-Engineered Pulmonary Artery
,”
N. Engl. J. Med.
,
344
(
7
), pp.
532
533
.
10.
Jakab
,
K.
,
Norotte
,
C.
,
Marga
,
F.
,
Murphy
,
K.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2010
, “
Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells
,”
Biofabrication
,
2
(
2
), p.
022001
.
11.
Miller
,
J. S.
,
Stevens
,
K. R.
,
Yang
,
M. T.
,
Baker
,
B. M.
,
Nguyen
,
D.-H. T.
,
Cohen
,
D. M.
,
Toro
,
E.
,
Chen
,
A. A.
,
Galie
,
P. A.
,
Yu
,
X.
,
Chaturvedi
,
R.
,
Bhatia
,
S. N.
, and
Chen
,
C. S.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nat. Mater.
,
11
(
9
), pp.
768
774
.
12.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,” International Association for Shell and Spatial Structures (
IASS
) Symposium, Valencia, Spain, Sept. 28–Oct. 2, pp. 2287–2294.
13.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
A Mathematical Model for Non-Flat Origami
,”
Origami3: 3rd International Meeting of Origami Mathematics, Science, and Education
, Monterey, CA, Mar. 9–11, A. K. Peters, Natick, MA, pp.
39
51
.
14.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami
,
4
, pp.
175
187
.
15.
Bowen
,
L. A.
,
Baxter
,
W. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami
,”
Mech. Mach. Theory
,
77
, pp.
13
24
.
16.
Noy
,
B.
,
George
,
M. S.
,
Alla
,
B.
,
Nana
,
Y. A.
, and
David
,
H. G.
,
2011
, “
Hands-Free Microscale Origami
,”
Origami 5
,
CRC Press
,
Boca Raton, FL
, pp.
371
384
.
17.
Kuribayashi-Shigetomi
,
K.
,
Onoe
,
H.
, and
Takeuchi
,
S.
,
2012
, “
Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force
,”
PLoS One
,
7
(
12
), p.
e51085
.
18.
Shenoy
,
V. B.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Thin-Film Materials: From Nanopolyhedra to Graphene Origami
,”
MRS Bull.
,
37
(
9
), pp.
847
854
.
19.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.
20.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
28
), pp.
12441
12445
.
21.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B. H.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.
22.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K. N.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2012
, “
Photo-Origami—Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(
16
), p.
161908
.
23.
Fernandes
,
R.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs
,”
Adv. Drug Delivery Rev.
,
64
(
14
), pp.
1579
1589
.
24.
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Microassembly Based on Hands Free Origami With Bidirectional Curvature
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091901
.
25.
Randall
,
C. L.
,
Gultepe
,
E.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Devices and Materials for Biomedical Applications
,”
Trends Biotechnol.
,
30
(
3
), pp.
138
146
.
26.
Timoshenko
,
S. P.
, and
Goodier
,
J.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
27.
Young
,
W. C.
,
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2012
,
Formulas for Stress and Strain
,
8th ed.
,
McGraw-Hill
, New York.
28.
Ashby
,
M. F.
,
2005
,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
, Oxford, UK.
29.
Ragab
,
A.-R. A.
, and
Bayoumi
,
S. E. A.
,
1998
,
Engineering Solid Mechanics: Fundamentals and Applications
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.