Reconfigurable structures based on origami design are useful for multifunctional applications, such as deployable shelters, solar array packaging, and tunable antennas. Origami provides a framework to decompose a complex 2D to 3D transformation into a series of folding operations about predetermined foldlines. Recent optimization toolsets have begun to enable a systematic search of the design space to optimize not only geometry but also mechanical performance criteria as well. However, selecting optimal fold patterns for large folding operations is challenging as geometric nonlinearity influences fold choice throughout the evolution. The present work investigates strategies for design optimization to incorporate the current and future configurations of the structure in the performance evaluation. An optimization method, combined with finite-element analysis, is used to distribute mechanical properties within an initially flat structure to determine optimal crease patterns to achieve desired motions. Out-of-plane and twist displacement objectives are used in three examples. The influence of load increment and geometric nonlinearity on the choice of crease patterns is studied, and appropriate optimization strategies are discussed.

References

References
1.
Miura
,
K.
,
1980
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
31st International Astronautical Congress
(
IAC
), Tokyo, Sept. 22–28.
2.
Sofla
,
A.
,
Meguid
,
S.
,
Tan
,
K.
, and
Yeo
,
W.
,
2010
, “
Shape Morphing of Aircraft Wing: Status and Challenges
,”
Mater. Des.
,
31
(
3
), pp.
1284
1292
.
3.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
4.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
Paper No. DETC2013-13016.
5.
Takano
,
T.
,
Miura
,
K.
,
Natori
,
M.
,
Hanayama
,
E.
,
Inoue
,
T.
,
Noguchi
,
T.
,
Miyahara
,
N.
, and
Nakaguro
,
H.
,
2004
, “
Deployable Antenna With 10-m Maximum Diameter for Space Use
,”
IEEE Trans. Antennas and Propag.
,
52
(
1
), pp.
2
11
.
6.
Liu
,
X.
,
Yao
,
S.
,
Georgakopoulos
,
S. V.
,
Cook
,
B. S.
, and
Tentzeris
,
M. M.
,
2014
, “
Reconfigurable Helical Antenna Based on an Origami Structure for Wireless Communication System
,”
2014 IEEE MTT-S International Microwave Symposium
(
IMS
), Tampa, FL, June 1–6, pp.
1
4
.
7.
Kuribayashi-Shigetomi
,
K.
,
Onoe
,
H.
, and
Takeuchi
,
S.
,
2012
, “
Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force
,”
PloS One
,
7
(
12
), p.
e51085
.
8.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.
9.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
2011 IEEE International Conference on Robotics and Automation
(
ICRA
),
Shanghai
,
China
, May 9–13, pp.
4608
4613
.
10.
Lang
,
R. J.
, “
Treemaker 4.0: A Program for Origami Design
,” http://www.langorigami.com/science/computational/treemaker/TreeMkr40.pdf
12.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Joo
,
J. J.
,
Reich
,
G. W.
, and
Vaia
,
R. A.
,
2014
, “
Topology Optimization for Design of Origami-Based Active Mechanisms
,”
ASME
Paper No. DETC2014-35153.
13.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
.
14.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
A. K. Peters, Ltd.
Natick, MA
, pp.
291
304
.
15.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci.
,
110
(
9
), pp.
3276
3281
.
16.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2013
, “
An Approach for Understanding Action Origami as Kinematic Mechanisms
,”
ASME
Paper No. DETC2013-13407.
17.
Buskohl
,
P. R.
,
Fuchi
,
K.
,
Reich
,
G. W.
,
Joo
,
J. J.
, and
Vaia
,
R. A.
,
2015
, “
Design Tools for Adaptive Origami Devices
,”
Proc. SPIE
,
9467
, p.
946719
.
18.
Shafer
,
J.
,
2010
,
Origami Ooh La La! Action Origami for Performance and Play
,
CreateSpace Independent Publishing Platform
,
Scotts Valley, CA
.
You do not currently have access to this content.