The aim of this paper is to introduce an approach for optimally organizing a variety of nonrepeating compliant-mechanism-like unit cells within a large deformable lattice such that the bulk behavior of the lattice exhibits a desired graded change in thermal expansion while achieving a desired uniform stiffness over its geometry. Such lattices with nonrepeating unit cells, called nonperiodic microarchitectured materials, could be sandwiched between two materials with different thermal expansion coefficients to accommodate their different expansions and/or contractions induced by changing ambient temperatures. This capability would reduce system-level failures within robots, mechanisms, electronic modules, or other layered coatings or structures made of different materials with mismatched thermal expansion coefficients. The closed-form analytical equations are provided, which are necessary to rapidly calculate the bulk thermal expansion coefficient and Young's modulus of general multimaterial lattices that consist first of repeating unit cells of the same design (i.e., periodic microarchitectured materials). Then, these equations are utilized in an iterative way to generate different rows of repeating unit cells of the same design that are layered together to achieve nonperiodic microarchitectured material lattices such that their top and bottom rows achieve the same desired thermal expansion coefficients as the two materials between which the lattice is sandwiched. A matlab tool is used to generate images of the undeformed and deformed lattices to verify their behavior and an example is provided as a case study. The theory provided is also verified and validated using finite-element analysis (FEA) and experimentation.

References

References
1.
Valdevit
,
L.
,
Jacobsen
,
J. A.
,
Greer
,
J. R.
, and
Carter
,
W. B.
,
2011
, “
Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architectured Materials
,”
J. Am. Ceram. Soc.
,
94
, pp.
s15
s34
.
2.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061004
.
3.
Ashby
,
M. F.
,
2005
,
Materials Selection in Mechanical Design
,
3rd ed.
,
Butterworth-Heinemann
,
Burlington, VT
.
4.
Ye
,
H.
,
Lin
,
M.
, and
Basaran
,
C.
,
2002
, “
Failure Modes and FEM Analysis of Power Electronic Packaging
,”
Finite Elem. Anal. Des.
,
38
(
7
), pp.
601
612
.
5.
Miller
,
R. A.
, and
Lowell
,
C. E.
,
1982
, “
Failure Mechanisms of Thermal Barrier Coatings Exposed to Elevated Temperatures
,”
Thin Solid Films
,
95
(
3
), pp.
265
273
.
6.
Cribb
,
J. L.
,
1963
, “
Shrinkage and Thermal Expansion of a Two Phase Material
,”
Nature
,
220
, pp.
576
577
.
7.
Lakes
,
R. S.
,
1996
, “
Dense Solid Microstructures With Unbounded Thermal Expansion
,”
J. Mech. Behav.
,
7
(
2
), pp.
85
92
.
8.
Lakes
,
R.
,
2007
, “
Cellular Solids With Tunable Positive or Negative Thermal Expansion of Unbounded Magnitude
,”
Appl. Phys. Lett.
,
90
(
22
), p.
221905
.
9.
Shapery
,
R. A.
,
1968
, “
Thermal Expansion Coefficients of Composite Materials Based on Energy Principles
,”
J. Compos. Mater.
,
2
(
3
), pp.
380
404
.
10.
Rosen
,
B. W.
, and
Hashin
,
Z.
,
1970
, “
Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials
,”
Int. J. Eng. Sci.
,
8
(
2
), pp.
157
173
.
11.
Gibiansky
,
L. V.
, and
Torquato
,
S.
,
1997
, “
Thermal Expansion of Isotropic Multiphase Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
45
(
7
), pp.
1223
1252
.
12.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
.
13.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
60
), pp.
1037
1067
.
14.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
15.
Chen
,
B. C.
,
Silva
,
E. C. N.
, and
Kikuchi
,
N.
,
2001
, “
Advances in Computational Design and Optimization With Application to MEMS
,”
Int. J. Numer. Methods Eng.
,
52
(
1–2
), pp.
23
62
.
16.
Lakes
,
R. S.
,
1996
, “
Cellular Solid Structures With Unbounded Thermal Expansion
,”
J. Mater. Sci. Lett.
,
15
(
6
), pp.
475
477
.
17.
Lehman
,
J. J.
, and
Lakes
,
R. S.
,
2014
, “
Stiff, Strong, Zero Thermal Expansion Lattices Via Material Hierarchy
,”
Compos. Struct.
,
107
, pp.
654
663
.
18.
Jefferson
,
G.
,
Parthasarathy
,
T. A.
, and
Kerans
,
R. J.
,
2009
, “
Tailorable Thermal Expansion Hybrid Structures
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2372
2387
.
19.
Steeves
,
C. A.
,
Lucato
,
S. L.
,
He
,
M.
,
Antinucci
,
E.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2007
, “
Concepts for Structurally Robust Materials That Combine Low Thermal Expansion With High Stiffness
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1803
1822
.
20.
Silva
,
M. J.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
,
1995
, “
The Effects of Non-Periodic Microstructure on the Elastic Properties of Two-Dimensional Cellular Solids
,”
Int. J. Mech. Sci.
,
37
(
11
), pp.
1161
1177
.
21.
Silva
,
M. J.
, and
Gibson
,
L. J.
,
1997
, “
The Effects of Non-Periodic Microstructure and Defects on the Compressive Strength of Two-Dimensional Cellular Solids
,”
Int. J. Mech. Sci.
,
39
(
5
), pp.
549
563
.
22.
Liu
,
K.
,
Khandelwal
,
K.
, and
Tovar
,
A.
,
2013
, “
Multiscale Topology Optimization of Structures and Non-Periodic Cellular Materials
,”
10th World Congress on Structural and Multidisciplinary Optimization
,
Orlando, FL
, May 19–24.
23.
Ajdari
,
A.
,
2008
, “
Mechanical Behavior of Cellular Structures: A Finite Element Study
,” Master's thesis, Northeastern University, Boston, MA.
24.
Ravichandran
,
K. S.
,
1995
, “
Thermal Residual Stresses in a Functionally Graded Material System
,”
Mater. Sci. Eng.
,
A201
(
1–2
), pp.
269
276
.
25.
Nemat-Alla
,
M.
,
2003
, “
Reduction of Thermal Stresses by Developing Two-Dimensional Functionally Graded Materials
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7339
7356
.
26.
Cho
,
J. R.
, and
Oden
,
J. T.
,
2000
, “
Functionally Graded Material: A Parametric Study on Thermal-Stress Characteristics Using the Crank–Nicolson–Galerkin Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
188
, pp.
17
38
.
27.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
1995
, “
Anisotropic Symmetries of Linear Elasticity
,”
ASME Appl. Mech. Rev.
,
48
(
5
), pp.
247
285
.
28.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
The University Press
,
Cambridge, UK
.
29.
Phillips
,
J.
,
1984
,
Freedom in Machinery: Volume 1, Introducing Screw Theory
,
Cambridge University Press
,
New York
.
30.
Roark
,
R. J.
,
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress & Strain
,
7th ed.
,
McGraw Hill Companies
,
New York
.
You do not currently have access to this content.