This paper presents a new model for a linear bistable compliant mechanism and design guidelines for its use. The mechanism is based on the crank–slider mechanism. This model takes into account the first mode of buckling and postbuckling behavior of a compliant segment to describe the mechanism's bistable behavior. The kinetic and kinematic equations, derived from the pseudo-rigid-body model (PRBM), were solved numerically and are represented in plots. This representation allows the generation of step-by-step design guidelines. The design parameters consist of maximum desired deflection, material selection, safety factor, compliant segments' widths, maximum force required for actuator selection, and maximum footprint (i.e., the maximum rectangular area that the mechanism can fit inside of and move freely without interfering with other components). Because different applications may have different input requirements, this paper describes two different design approaches with different parameters subsets as inputs. The linear bistable compliant crank–slider mechanism (LBCCSM) can be used in the shape-morphing space-frame (SMSF) as potential application. The frame's initial shape is constructed from a single-layer grid of flexures, rigid links, and LBCCSMs. The grid is bent into the space-frame's initial cylindrical shape, which can morph because of the inclusion of LBCCSMs in its structure.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Kota
,
S.
, and
Ananthasuresh
,
G. K.
,
1995
, “
Designing Compliant Mechanisms
,”
Mechanical Eng. CIME
,
117
(
11
), pp.
93
96
.
3.
Salamon
,
B. A.
,
1989
, “
Mechanical Advantage Aspects in Compliant Mechanisms Design
,” M.S. thesis, Purdue University, West Lafayette, IN.
4.
Motsinger
,
R. N.
,
1964
, “
Flexural Devices in Measurement Systems
,”
Measurement Engineering
,
P. K.
Stein
, ed.,
Stein Engineering Services
,
Phoenix, AZ
, Chap. 11.
5.
Dunning
,
A. G.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2013
, “
A Compact Low-Stiffness Six Degrees of Freedom Compliant Precision Stage
,”
Precis. Eng.
,
37
(
2
), pp.
380
388
.
6.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexural Hinges
,”
Mach. Des.
,
37
(
27
), pp.
151
156
.
7.
Chow
,
W. W.
,
1981
, “
Hinges and Straps
,”
Plastics Products Design Handbook, Part B
,
E.
Miller
, ed.,
Marcel Dekker
,
New York
, Chap. 12.
8.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.
9.
Opdahl
,
P. G.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
1998
, “
An Investigation Into Compliant Bistable Mechanisms
,” Design Engineering Technical Conferences and Computers and Information in Engineering Conference (
DETC '98
), Atlanta, GA, Sep. 13–16, Paper No. DETC98/MECH-5914.
10.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.
11.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2013
, “
Bistable Buckled Beam: Elastica Modeling and Analysis of Static Actuation
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2881
2893
.
12.
Vaz
,
M. A.
, and
Silva
,
D.
,
2003
, “
Post-Buckling Analysis of Slender Elastic Rods Subjected to Terminal Forces
,”
Int. J. Non-Linear Mech.
,
38
(
4
), pp.
483
492
.
13.
Vaz
,
M. A.
, and
Mascaro
,
G.
,
2005
, “
Post-Buckling Analysis of Slender Elastic Vertical Rods Subjected to Terminal Forces and Self-Weight
,”
Int. J. Non-Linear Mech.
,
40
(
7
), pp.
1049
1056
.
14.
Vaz
,
M. A.
, and
Patel
,
M. H.
,
2007
, “
Post-Buckling Behaviour of Slender Structures With a Bi-Linear Bending Moment-Curvature Relationship
,”
Int. J. Non-Linear Mech.
,
42
(
3
), pp.
470
483
.
15.
Mazzilli
,
C.
,
2009
, “
Buckling and Post-Buckling of Extensible Rods Revisited: A Multiple-Scale Solution
,”
Int. J. Non-Linear Mech.
,
44
(
2
), pp.
200
208
.
16.
Khatait
,
J. P.
,
Mukherjee
,
S.
, and
Seth
,
B.
,
2006
, “
Compliant Design for Flapping Mechanism: A Minimum Torque Approach
,”
Mech. Mach. Theory
,
41
(
1
), pp.
3
16
.
17.
Ishii
,
H.
, and
Ting
,
K. L.
,
2004
, “
SMA Actuated Compliant Bistable Mechanisms
,”
Mechatronics
,
14
(
4
), pp.
421
437
.
18.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME
Paper No. DETC98/MECH-5837.
19.
Chen
,
G.
, and
Du
,
Y.
,
2012
, “
Double-Young Tristable Mechanisms
,”
ASME. J. Mech. Rob.
,
5
(
1
), p.
011007
.
20.
Luharuka
,
R.
, and
Hesketh
,
P. J.
,
2007
, “
Design of Fully Compliant, In-Plane Rotary, Bistable Micromechanisms for MEMS Applications
,”
Sens. Actuators A
,
134
(
1
), pp.
231
238
.
21.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
.
22.
Lusk
,
C.
, and
Howell
,
L. L.
,
2008
, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
,
130
(
4
), p.
045001
.
23.
Du
,
Y. X.
,
Chen
,
L. P.
, and
Luo
,
Z.
,
2008
, “
Topology Synthesis of Geometrically Nonlinear Compliant Mechanisms Using Meshless Methods
,”
Acta Mech. Solida Sin.
,
21
(
1
), pp.
51
61
.
24.
Deepak
,
S.
,
Sahu
,
D.
,
Dinesh
,
M.
,
Jalan
,
S.
, and
Ananthasuresh
,
G. K.
,
2008
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
New York
, Aug. 3–6, Paper No. DETC2008-49612.
25.
Su
,
H.
, and
McCarthy
,
J.
,
2006
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
.
26.
Limaye
,
P.
,
Ramu
,
G.
,
Pamulapati
,
S.
, and
Ananthasuresh
,
G. K.
,
2012
, “
A Compliant Mechanism Kit With Flexible Beams and Connectors Along With Analysis and Optimal Synthesis Procedures
,”
Mech. Mach. Theory
,
49
, pp.
21
39
.
27.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
28.
Lusk
,
C.
,
2011
, “
Quantifying Uncertainty for Planar Pseudo-Rigid Body Models
,”
ASME
Paper No. DETC2011-47456.
29.
Smith
,
C.
, and
Lusk
,
C.
,
2011
, “
Modeling and Parameter Study of Bistable Spherical Compliant Mechanisms
,”
ASME
Paper No. DETC2011-47397.
30.
Alqasimi
,
A.
,
Lusk
,
C.
, and
Chimento
,
J.
,
2014
, “
Design of a Linear Bi-Stable Compliant Crank-Slider-Mechanism (LBCCSM)
,”
ASME
Paper No. DETC2014-34285.
31.
Alqasimi
,
A.
, and
Lusk
,
C.
,
2015
, “
Shape-Morphing Space Frame (SMSF) Using Linear Bistable Elements
,”
Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
, Aug. 2–5, Paper No. DETC2015-47526.
32.
Chirikjian
,
G. S.
,
1995
, “
Kinematic Synthesis of Mechanisms and Robotic Manipulators With Binary Actuators
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
573
580
.
You do not currently have access to this content.