This paper proposes the use of passive force and torque limiting devices to bound the maximum forces that can be applied at the end-effector or along the links of a robot, thereby ensuring the safety of human–robot interaction. Planar isotropic force limiting modules are proposed and used to analyze the force capabilities of a two-degree-of-freedom (2DOF) planar serial robot. The force capabilities at the end-effector are first analyzed. It is shown that, using isotropic force limiting modules, the performance to safety index remains excellent for all configurations of the robot. The maximum contact forces along the links of the robot are then analyzed. Force and torque limiters are distributed along the structure of the robot in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is then presented in order to support the results. Finally, examples of mechanical designs of force/torque limiters are shown to illustrate a possible practical implementation of the concept.

References

References
1.
Schraft
,
R. D.
,
Meyer
,
C.
,
Parlitz
,
C.
, and
Helms
,
E.
,
2005
, “
PowerMate—A Safe and Intuitive Robot Assistant for Handling and Assembly Tasks
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4074
4079
.
2.
Gosselin
,
C.
,
Laliberté
,
T.
,
Mayer-St-Onge
,
B.
,
Foucault
,
S.
,
Lecours
,
A.
,
Duchaine
,
V.
,
Paradis
,
N.
,
Gao
,
D.
, and
Menassa
,
R.
,
2013
, “
A Friendly Beast of Burden: A Human-Assistive Robot for Handling Large Payloads
,”
IEEE Rob. Autom. Mag.
,
20
(
4
), pp.
139
147
.
3.
De Santis
,
A.
,
Siciliano
,
B.
,
De Luca
,
A.
, and
Bicchi
,
A.
,
2008
, “
An Atlas of Physical Human–Robot Interaction
,”
Mech. Mach. Theory
,
43
(
3
), pp.
253
270
.
4.
Duchaine
,
V.
,
Lauzier
,
N.
,
Baril
,
M.
,
Lacasse
,
M.-A.
, and
Gosselin
,
C.
,
2009
, “
A Flexible Robot Skin for Safe Physical Human Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, may 12–17, pp.
3676
3681
.
5.
Yamada
,
Y.
,
Morizono
,
T.
,
Umetani
,
Y.
, and
Takahashi
,
H.
,
2005
, “
Highly Soft Viscoelastic Robot Skin With a Contact Object-Location-Sensing Capability
,”
IEEE Trans. Ind. Electron.
,
52
(
4
), pp.
960
968
.
6.
Albu-Schäffer
,
A.
,
Haddadin
,
S.
,
Ott
,
C.
,
Stemmer
,
A.
,
Wimböck
,
T.
, and
Hirzinger
,
G.
,
2007
, “
The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments
,”
Ind. Rob.
,
34
(
5
), pp.
376
385
.
7.
Pratt
,
G.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Rob.
,
29
(
3
), pp.
234
241
.
8.
Zinn
,
M.
,
Khatib
,
O.
,
Roth
,
B.
, and
Salisbury
,
J. K.
,
2005
, “
A New Actuation Approach for Human-Friendly Robot Design
,”
Int. J. Rob. Res.
,
23
(
4/5
), pp.
379
398
.
9.
Vanderborght
,
B.
,
Albu-Schäffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Ganesh
,
G.
,
Garabini
,
M.
,
Grebenstein
,
M.
,
Grioli
,
G.
,
Haddadin
,
S.
,
Hoppner
,
H.
,
Jafari
,
A.
,
Laffranchi
,
M.
,
Lefeber
,
D.
,
Petit
,
F.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Visser
,
L. C.
, and
Wolf
,
S.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
10.
Park
,
J.-J.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Joint Mechanism Based on Passive Compliance for Collision Safety
,”
Recent Progress in Robotics: Viable Robotic Service to Human
,
Springer
,
Berlin
, pp.
49
61
.
11.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2011
, “
Series Clutch Actuators for Safe Physical Human–Robot Interaction
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
5401
5406
.
12.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2009
, “
Requirements for Safe Robots: Measurements, Analysis and New Insights
,”
Int. J. Rob. Res.
,
28
(
11–12
), pp.
1507
1527
.
13.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2009
, “
Collision Analysis and Evaluation of Collision Safety for Service Robots Working in Human Environments
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Munich, Germany, June 22–26.
14.
ISO
,
2011
, “
Robots for Industrial Environments—Safety Requirements. Part 1: Robots
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO10218.
15.
ISO
,
2014
,
Robots and Robot Devices—Safety Requirements for Industrial Robots-Collaborative Operation
,
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO/DTS 15066.
16.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2012
, “
Performance Indices for Collaborative Serial Robots With Optimally Adjusted Series Clutch Actuators
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021002
.
17.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2010
, “
Safe Joint Mechanism Using Inclined Link With Springs for Collision Safety and Positioning Accuracy of a Robot Arm
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AL, May 3–7, pp.
813
818
.
18.
Zhang
,
M.
, and
Gosselin
,
C.
,
2016
, “
Optimal Design of Safe Planar Manipulators Using Passive Torque Limiters
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011008
.
You do not currently have access to this content.