The solution for positive wire tension vector in the presence of uncertainties in design parameters and error in data is investigated for parallel manipulators. The minimum 2-norm non-negative solution and enclosures for the vector of wire tensions are formulated utilizing the perturbed and the interval forms of Jacobian matrix and platform wrench. Methodologies for calculating the minimum 2-norm non-negative solution set of wire tension vector, for interval Jacobian matrix and interval external wrench, are presented. Example parallel manipulators are simulated to investigate the implementation and effectiveness of these methodologies while relating their results.

References

References
1.
Dagalakis
,
N. G.
,
Albus
,
J. S.
,
Wang
,
B.-L.
,
Unger
,
J.
, and
Lee
,
J. D.
,
1989
, “
Stiffness Study of a Parallel Link Robot Crane for Shipbuilding Applications
,”
ASME J. Offshore Mech. Arct. Eng.
,
111
(
3
), pp.
183
193
.
2.
Kawamura
,
S.
, and
Ito
,
K.
,
1993
, “
A New Type of Master Robot for Teleoperation Using a Radial Wire Drive System
,”
IEEE/RSJ International Conference Intelligent Robots and Systems
(
IROS '93
), Yokohama, Japan, July 26–30, pp.
55
60
.
3.
Landsberger
,
S. E.
, and
Sheridan
,
T. B.
,
1993
, “
A Minimal, Minimal Linkage: The Tension-Compression Parallel Link Manipulator
,”
Robot Mechatronis and Manufacturing Systems
, Elsevier, Amsterdam, pp.
81
88
.
4.
Mroz
,
G.
, and
Notash
,
L.
,
2004
, “
Design and Prototype of Parallel, Wire-Actuated Robots With a Constraining Linkage
,”
J. Rob. Syst.
,
21
(
12
), pp.
677
687
.
5.
Notash
,
L.
,
2012
, “
Failure Recovery for Wrench Capability of Wire-Actuated Parallel Manipulators
,”
Robotica
,
30
(
6
), pp.
941
950
.
6.
Notash
,
L.
,
2013
, “
Designing Positive Tension for Wire-Actuated Parallel Manipulators
,”
Advances in Mechanisms, Robotics and Design Education and Research
,
V.
Kumar
,
J.
Schmiedeler
,
S. V.
Sreenivasan
,
H.-J.
Su
, eds.,
Springer
,
Cham, Switzerland
, pp.
251
263
.
7.
Pott
,
A.
,
Bruckmann
,
T.
, and
Mikelsons
,
L.
,
2009
, “
Closed-Form Force Distribution for Parallel Wire Robots
,”
Computational Kinematics
,
Springer
,
Berlin
, pp.
25
34
.
8.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspace of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
.
9.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
10.
McColl
,
D.
, and
Notash
,
L.
,
2010
, “
Workspace Generation of Planar Wire-Actuated Parallel Manipulators With Antipodal Method
,”
RoManSy 18 Robot Design, Dynamics and Control
,
Springer Wein
,
New York
, pp.
291
298
.
11.
McColl
,
D.
, and
Notash
,
L.
,
2011
, “
Workspace Formulation of Planar Wire-Actuated Parallel Manipulators
,”
Robotica
,
29
(
4
), pp.
607
617
.
12.
Merlet
,
J.-P.
,
2009
, “
Interval Analysis for Certified Numerical Solution of Problems in Robotics
,”
Int. J. Appl. Math. Comput. Sci.
,
19
(
3
), pp.
399
412
.
13.
Hansen
,
E.
,
1992
,
Global Optimization Using Interval Analysis
,
Marcel Dekker
,
New York
.
14.
Moore
,
R.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA
.
15.
Notash
,
L.
,
2015
, “
Analytical Methods for Solution Sets of Interval Wrench
,”
ASME
Paper No. DETC2015-47575.
16.
Oettli
,
W.
,
1965
, “
On the Solution Set of a Linear System With Inaccurate Coefficients
,”
SIAM J. Numer. Anal., Ser. B
,
2
(
1
), pp.
115
118
.
17.
Hartfiel
,
D.
,
1980
, “
Concerning the Solution Set of Ax = b Where P ≦ A ≦ Q and p ≦ b ≦ q
,”
Numer. Math.
,
35
(
3
), pp.
355
359
.
18.
Popova
,
E. D.
, and
Krämer
,
W.
,
2008
, “
Visualizing Parametric Solution Sets
,”
BIT Numer. Math.
,
48
(
1
), pp.
95
115
.
19.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J. P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
20.
Nazari
,
V.
, and
Notash
,
L.
,
2014
, “
Parametric Method for Motion Analysis of Manipulators With Uncertainty in Kinematic Parameters
,”
RoManSy 20—Advances on Theory and Practice of Robots and Manipulators
,
Springer
,
Cham, Switzerland
, pp.
9
17
.
21.
Notash
,
L.
,
2013
, “
Wrench Recovery for Wire-Actuated Parallel Manipulators
,”
RoManSy 19—Robot Design, Dynamics and Control
,
Springer
,
Vienna
, pp.
201
208
.
22.
Kearfott
,
R. B.
,
1996
,
Rigorous Global Search: Continuous Problems
,
Kluwer Academic
,
Dordrecht
.
23.
Rump
,
S. M.
,
2012
, “
Verified Bounds for Least Squares Problems and Underdetermined Linear System
,”
SIAM J. Matrix Anal. Appl.
,
33
(
1
), pp.
130
148
.
24.
Fiedler
,
M.
,
Nedoma
,
J.
,
Ramik
,
J.
,
Rohn
,
J.
, and
Zimmermann
,
K.
,
2006
,
Linear Optimization Problems With Inexact Data
,
Springer
,
New York
.
25.
Kupriyanova
,
L.
,
1995
, “
Inner Estimation of the United Solution Set of Interval Linear Algebraic System
,”
Reliab. Comput.
,
1
(
1
), pp.
15
31
.
26.
Stewart
,
G. W.
, and
Sun
,
J.-G.
,
1990
,
Matrix Perturbation Theory
,
Academic Press
,
Cambridge, MA
.
27.
Rump
,
S. M.
,
1999
, “
INTLAB—INTerval LABoratory
,”
Developments in Reliable Computing
,
T.
Csendes
, ed.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
77
104
.
You do not currently have access to this content.