This study presents a topology optimization method for design of complaint mechanisms with maximum output displacement as the objective function. Unlike traditional approaches, one special characteristic of this method is that the volume fraction, which is defined as the calculated volume divided by the full volume, remains the same value throughout the optimization process based on the proposed pseudodensity and sensitivity number update scheme. The pseudodensity of each element is initially with the same value as the prespecified volume fraction constraint and can be decreased to a very small value or increased to one with a small increment. Two benchmark problems, the optimal design of a force–displacement inverter mechanism and a crunching mechanism, are provided as the illustrative examples to demonstrate the effectiveness of the proposed method. The results agree well with the previous studies. The proposed method is a general approach which can be used to synthesize the optimal designs of compliant mechanisms with better computational efficiency.

References

References
1.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
2.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1997
,
Evolutionary Structural Optimization
,
Springer
, West Sussex, London.
3.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
4.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(9–10), pp.
635
654
.
5.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
7.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
.
8.
Querin
,
O. M.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
2000
, “
Evolutionary Structural Optimisation Using an Additive Algorithm
,”
Finite Elem. Anal. Des.
,
34
(
3–4
), pp.
291
308
.
9.
Ansola
,
R.
,
Veguería
,
E.
,
Canales
,
J.
, and
Tárrago
,
J. A.
,
2007
, “
A Simple Evolutionary Topology Optimization Procedure for Compliant Mechanism Design
,”
Finite Elem. Anal. Des.
,
44
, pp.
53
62
.
10.
Ansola
,
R.
,
Veguería
,
E.
,
Maturana
,
A.
, and
Canales
,
J.
,
2010
, “
3D Compliant Mechanisms Synthesis by a Finite Element Addition Procedure
,”
Finite Elem. Anal. Des.
,
46
(
9
), pp.
760
769
.
11.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bidirectional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
12.
Huang
,
X.
, and
Xie
,
Y. M.
,
2009
, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials
,”
Comput. Mech.
,
43
(
3
), pp.
393
401
.
13.
Huang
,
X.
, and
Xie
,
Y. M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
, West Sussex, UK.
14.
Li
,
Y.
,
Huang
,
X.
,
Xie
,
Y. M.
, and
Zhou
,
S.
,
2013
, “
Bi-Directional Evolutionary Structural Optimization for Design of Compliant Mechanisms
,”
Key Eng. Mater.
,
535–536
, pp.
373
376
.
15.
Alonso
,
C.
,
Querin
,
O. M.
, and
Ansola
,
R.
,
2013
, “
A Sequential Element Rejection and Admission (Sera) Method for Compliant Mechanisms Design
,”
Struct. Multidiscip. Optim.
,
47
(
6
), pp.
795
807
.
16.
Zhou
,
H.
, and
Mandala
,
A. R.
,
2012
, “
Topology Optimization of Compliant Mechanisms Using the Improved Quadrilateral Discretization Model
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021007
.
17.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
18.
Xu
,
Q.
,
2012
, “
New Flexure Parallel-Kinematic Micropositioning System With Large Workspace
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
478
491
.
19.
Dai
,
J. S.
, and
Ding
,
X.
,
2006
, “
Compliance Analysis of a Three-Legged Rigidly-Connected Compliant Platform Device
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
755
764
.
20.
Liu
,
C.-H.
, and
Lee
,
K.-M.
,
2012
, “
Dynamic Modeling of Damping Effects in Highly Damped Compliant Fingers for Applications Involving Contacts
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
1
), p.
011005
.
21.
Lee
,
K.-M.
, and
Liu
,
C.-H.
,
2012
, “
Explicit Dynamic Finite Element Analysis of an Automated Grasping Process Using Highly Damped Compliant Fingers
,”
Comput. Math. Appl.
,
64
(
5
), pp.
965
977
.
You do not currently have access to this content.