We report on the model-based development of a climbing robot that is capable of performing dynamic vertical and lateral climbing motions. The robot was designed based on the two-arm vertical-climbing model inspired by the dynamic climbing motion of cockroaches and geckos, with the extension of introducing the arm sprawl motion to initiate the lateral climbing motion. The quantitative formulation of the model was derived based on Lagrangian mechanics, and the numerical analysis of the model was conducted. The robot was then built and controlled based on the analysis results of the model. The robot can perform the behaviors predicted by the model in which the climbing speed decreases when the swing magnitude increases, and the lateral climbing motion can be initiated when the arm sprawl motion is introduced. The experimental validation of the robot confirms that though the reduced-order two-arm model is abstract and ignored various empirical details, the model is sufficient to predict the robot behavior. This conclusion further suggests that the behavior development of the robot can indeed be explored and evaluated by using the simple climbing model in the simulation environment in place of extensive trial-and-error on the physical robot.

References

1.
Luk
,
B. L.
,
Cooke
,
D. S.
,
Galt
,
S.
,
Collie
,
A. A.
, and
Chen
,
S.
,
2005
, “
Intelligent Legged Climbing Service Robot for Remote Maintenance Applications in Hazardous Environments
,”
Rob. Auton. Syst.
,
53
(
2
), pp.
142
152
.
2.
Wei
,
T. E.
,
Quinn
,
R. D.
, and
Ritzmann
,
R. E.
,
2005
, “
A CLAWAR That Benefits From Abstracted Cockroach Locomotion Principles
,”
Climbing and Walking Robots
,
Springer
,
Berlin
, pp.
849
857
.
3.
Krosuri
,
S. P.
, and
Minor
,
M. A.
,
2005
, “
Design, Modeling, Control, and Evaluation of a Hybrid Hip Joint Miniature Climbing Robot
,”
Int. J. Rob. Res.
,
24
(
12
), pp.
1033
1053
.
4.
Nabulsi
,
S.
,
Montes
,
H.
, and
Armada
,
M.
, “
Roboclimber: Control System Architecture
,”
Climbing and Walking Robots
,
Springer
, Berlin, pp.
943
952
.
5.
Bretl
,
T.
,
2006
, “
Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem
,”
Int. J. Rob. Res.
,
25
(
4
), pp.
317
342
.
6.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutkosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
65
74
.
7.
Spenko
,
M.
,
Haynes
,
G. C.
,
Saunders
,
J.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Rob.
,
25
(
4–5
), pp.
223
242
.
8.
Provancher
,
W. R.
,
Jensen-Segal
,
S. I.
, and
Fehlberg
,
M. A.
,
2011
, “
ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot
,”
IEEE/ASME Trans. Mechatron.
,
16
(
5
), pp.
897
906
.
9.
Lynch
,
G. A.
,
Clark
,
J. E.
,
Lin
,
P. C.
, and
Koditschek
,
D. E.
,
2012
, “
A Bioinspired Dynamical Vertical Climbing Robot
,”
Int. J. Rob. Res.
,
31
(
8
), pp.
974
996
.
10.
Dickson
,
J.
, and
Clark
,
J. E.
, 2012, “
The Effect of Sprawl Angle and Wall Inclination on a Bipedal Dynamic Climbing Platform
,”
International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR)
,
Baltimore, MD
, July 23-26.
11.
Guan
,
Y. S.
,
Zhu
,
H. F.
,
Wu
,
W. Q.
,
Zhou
,
X. F.
,
Jiang
,
L.
,
Cai
,
C. W.
,
Zhang
,
L. M.
, and
Zhang
,
H.
,
2013
, “
A Modular Biped Wall-Climbing Robot With High Mobility and Manipulating Function
,”
IEEE/ASME Trans. Mechatron.
,
18
(
6
), pp.
1787
1798
.
12.
Osswald
,
M.
, and
Iida
,
F.
,
2013
, “
Design and Control of a Climbing Robot Based on Hot Melt Adhesion
,”
Rob. Auton. Syst.
,
61
(
6
), pp.
616
625
.
13.
Degani
,
A.
,
Long
,
A. W.
,
Feng
,
S. Y.
,
Brown
,
H. B.
,
Gregg
,
R. D.
,
Choset
,
H.
,
Mason
,
M. T.
, and
Lynch
,
K. M.
,
2014
, “
Design and Open-Loop Control of the ParkourBot: A Dynamic Climbing Robot
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
705
718
.
14.
He
,
B.
,
Wang
,
Z. P.
,
Li
,
M. H.
,
Wang
,
K.
,
Shen
,
R. J.
, and
Hu
,
S. Q.
,
2014
, “
Wet Adhesion Inspired Bionic Climbing Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
312
320
.
15.
Murphy
,
M. P.
,
Tso
,
W.
,
Tanzini
,
M.
, and
Sitti
,
M.
, “
Waalbot: An Agile Small-Scale Wall Climbing Robot Utilizing Pressure Sensitive Adhesives
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Beijing
, Oct. 9-15, pp.
3411
3416
.
16.
Koo
, I
. M.
,
Trong
,
T. D.
,
Lee
,
Y. H.
,
Moon
,
H.
,
Koo
,
J.
,
Park
,
S. K.
, and
Choi
,
H. R.
,
2013
, “
Development of Wall Climbing Robot System by Using Impeller Type Adhesion Mechanism
,”
J. Intell. Rob. Syst.
,
72
(
1
), pp.
57
72
.
17.
Tavakoli
,
M.
,
Viegas
,
C.
,
Marques
,
L.
,
Pires
,
J. N.
, and
de Almeida
,
A. T.
,
2013
, “
OmniClimbers: Omni-Directional Magnetic Wheeled Climbing Robots for Inspection of Ferromagnetic Structures
,”
Rob. Auton. Syst.
,
61
(
9
), pp.
997
1007
.
18.
Greuter
,
M.
,
Shah
,
G.
,
Caprari
,
G.
,
Tâche
,
F.
,
Siegwart
,
R.
, and
Sitti
,
M.
, “
Toward Micro Wall-Climbing Robots Using Biomimetic Fibrillar Adhesives
,”
3rd International Symposium on Autonomous Minirobots for Research and Edutainment
(
AMiRE 2005
), Fukui, Japan, Sept. 20-22,
Springer
, Berlin, pp.
39
46
.
19.
Kim
,
H.
,
Kim
,
D.
,
Yang
,
H.
,
Lee
,
K.
,
Seo
,
K.
,
Chang
,
D.
, and
Kim
,
J.
,
2008
, “
Development of a Wall-Climbing Robot Using a Tracked Wheel Mechanism
,”
J. Mech. Sci. Technol.
,
22
(
8
), pp.
1490
1498
.
20.
Wang
,
H. Q.
,
Yamamoto
,
A.
, and
Higuchi
,
T.
,
2014
, “
A Crawler Climbing Robot Integrating Electroadhesion and Electrostatic Actuation
,”
Int. J. Adv. Rob. Syst.
,
11
, p. 191.
21.
Nam
,
S.
,
Oh
,
J.
,
Lee
,
G.
,
Kim
,
J.
, and
Seo
,
T.
,
2014
, “
Dynamic Analysis During Internal Transition of a Compliant Multi-Body Climbing Robot With Magnetic Adhesion
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
5175
5187
.
22.
Zhang
,
H.
,
Gonzalez-Gomez
,
J.
,
Chen
,
S.
,
Wang
,
W.
,
Liu
,
R.
,
Li
,
D.
, and
Zhang
,
J.
, “
A Novel Modular Climbing Caterpillar Using Low-Frequency Vibrating Passive Suckers
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Zurich, Switzerland, Sept. 4-7.
23.
Autumn
,
K.
,
Hsieh
,
S.
,
Dudek
,
D.
,
Chen
,
J.
,
Chitaphan
,
C.
, and
Full
,
R.
,
2006
, “
Dynamics of Geckos Running Vertically
,”
J. Exp. Biol.
,
209
(
2
), pp.
260
272
.
24.
Goldman
,
D. I.
,
Chen
,
T. S.
,
Dudek
,
D. M.
, and
Full
,
R. J.
,
2006
, “
Dynamics of Rapid Vertical Climbing in Cockroaches Reveals a Template
,”
J. Exp. Biol.
,
209
(
15
), pp.
2990
3000
.
25.
Lynch
,
G. A.
,
Rome
,
L.
, and
Koditschek
,
D. E.
,
2011
, “
Sprawl Angle in Simplified Models of Vertical Climbing: Implications for Robots and Roaches
,”
Appl. Bionics Biomech.
,
8
(
3
), pp.
441
452
.
26.
Ko
,
W. H.
,
Chiang
,
W. H.
,
Hsu
,
Y. H.
,
Fang
,
I. L.
,
Lin
,
H. S.
,
Yu
,
M. Y.
, and
Lin
,
P. C.
,
2014
, “
A Dynamic Vertical Climbing Robot
,” International Conference on Advanced Robotics and Intelligent Systems (
ARIS
), Taipei, Taiwan, June 6-8, p.
248
.
27.
Yu
,
M. Y.
,
Lin
,
H. S.
,
Ko
,
W. H.
,
Chiang
,
W. H.
,
Fang
,
I. L.
,
Hsu
,
Y. H.
, and
Lin
,
P. C.
,
2014
, “
Analysis of a Dynamic Climbing Two-Arm Model
,”
International Conference on Advanced Robotics and Intelligent Systems
(
ARIS
), Taipei, Taiwan, June 6–8, p.
250
.
You do not currently have access to this content.