In this study, we analyze different actuation configurations for bionic hands in order to improve their level of anthropomorphism. We used a previously developed benchmark, the anthropomorphism index (AI), for 15 different actuation configurations of hands from one to five actuators. By comparing the AI of these configurations, we obtained important conclusions regarding the actuation strategy of the anthropomorphic hands with a limited number of actuators. Results show that the actuation configuration is very important for increasing the level of anthropomorphism of the hands. It is shown that with an appropriate actuation configuration, a configuration with lower number of actuators can result in a higher AI than a configuration with higher number of actuators. We also showed the best actuation configurations for each category of 1–5 actuators. Results can be used as a guideline for development of hands with high anthropomorphism in terms of grasping postures.

References

References
1.
Tavakoli
,
M.
,
Enes
,
B.
,
Santos
,
J.
,
Marques
,
L.
, and
Almeida
,
A. T.
,
2015
, “
Underactuated Anthropomorphic Hands: Actuation Strategies for a Better Functionality
,”
Rob. Auton. Syst.
,
74
, pp.
267
282
.
2.
Feix
,
T.
,
Romero
,
J.
,
Ek
,
C.
,
Schmiedmayer
,
H.-B.
, and
Kragic
,
D.
, “
Grade Your Hand Toolbox
,” http://grasp.xief.net
3.
Feix
,
T.
,
Romero
,
J.
,
Ek
,
C. H.
,
Schmiedmayer
,
H.-B.
, and
Kragic
,
D.
,
2013
, “
A Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
82
93
.
4.
Otto Bock
, “
Sensorhand Speed
,” http://www.ottobock.com
5.
Otto Bock
, “
Michel Angelo Hand
,” http://www.living-with-michelangelo.com/gb/home/
6.
Gaiser
,
I.
,
Schulz
,
S.
,
Kargov
,
A.
,
Klosek
,
H.
,
Bierbaum
,
A.
,
Pylatiuk
,
C.
,
Oberle
,
R.
,
Werner
,
T.
,
Asfour
,
T.
,
Bretthauer
,
G.
, and
Dillmann
,
R.
,
2008
, “
A New Anthropomorphic Robotic Hand
,” 8th
IEEE-RAS
International Conference on Humanoid Robots
,
Daejeon
, Dec. 1–3, pp.
418
422
.
7.
Fukaya
,
N.
,
Toyama
,
S.
,
Asfour
,
T.
, and
Dillmann
,
R.
,
2000
, “
Design of the TUAT/Karlsruhe Humanoid Hand
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Takamatsu
,
Japan
, Vol.
3
, pp.
1754
1759
.
8.
Chu
,
J.-U.
,
Jung
,
D.-H.
, and
Lee
,
Y.-J.
,
2008
, “
Design and Control of a Multifunction Myoelectric Hand With New Adaptive Grasping and Self-Locking Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Pasadena
, CA, May 19–23, pp.
743
748
.
9.
Mitsui
,
K.
,
Ozawa
,
R.
, and
Kou
,
T.
,
2013
, “
An Under-Actuated Robotic Hand for Multiple Grasps
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Tokyo
,
Japan
, Nov. 3–7, pp.
5475
5480
.
10.
Pons
,
J. L.
,
Rocon
,
E.
,
Ceres
,
R.
,
Reynaerts
,
D.
,
Saro
,
B.
,
Levin
,
S.
, and
Van Moorleghem
,
W.
,
2004
, “
The Manus-Hand Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects
,”
Auton. Rob.
,
16
(
2
), pp.
143
163
.
11.
Cipriani
,
C.
,
Controzzi
,
M.
, and
Carrozza
,
M. C.
,
2010
, “
Objectives, Criteria and Methods for the Design of the Smarthand Transradial Prosthesis
,”
Robotica
,
28
(
6
), pp.
919
927
.
12.
RSLsteeper
, “
Bebionic Hand
,” http://www.rslsteeper.com/
13.
TouchBionics
, “
iLimb Hand
,” http://www.touchbionics.com/
14.
MekaBot
,
2009
,
Meka H2 Compliant Hand Datasheet
,
MekaBot
,
San Francisco
.
15.
Tavakoli
,
M.
, and
de Almeida
,
A. T.
,
2014
, “
Adaptive Under-Actuated Anthropomorphic Hand: ISR-Softhand
,”
IEEE International Conference on Robotics and Automation
(
IROS
),
Chicago, IL
, Sept. 14–18.
16.
Tavakoli
,
M.
,
Enes
,
B.
,
Marques
,
L.
, and
de Almeida
,
A. T.
,
2014
, “
Actuation Strategies for Underactuated Anthropomorphic Hands
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IRO
),
Chicago, IL
, Sept. 14–18.
You do not currently have access to this content.