Singularities are one of the most important issues affecting the performance of parallel mechanisms. Therefore, analysis of their locations and closeness is essential for the development of a high-performance mechanism. The screw theory based motion/force transmission analysis provides such a closeness measure in terms of the work performed between specific mechanism twists and wrenches. As such, this technique has been applied to many serial chain parallel mechanisms. However, the motion/force transmission performance of parallel mechanisms with mixed topology chains is yet to be examined. These chains include linkages in both series and parallel, where the parallel portion is termed a closed-loop subchain (CLSC). This paper provides an analysis of such chains, where the CLSC is a planar four-bar linkage. In order to completely define the motion/force transmission abilities of these mechanisms, adapted wrench definitions are introduced. The proposed methodology is applied to a family of two degrees-of-freedom planar axis-symmetric parallel mechanisms, each with a different CLSC configuration. The presented analysis provides the first complete motion/force transmission analysis of such mechanisms.

References

References
1.
Reboulet
,
C.
,
1996
, “
Parallel-Structure Manipulator Device for Displacing and Orienting an Object in a Cylindrical Work Space
,” U.S. Patent No. 5,539,291.
2.
Brogårdh
,
T.
, and
Hovland
,
G.
,
2008
, “
The Tau PKM Structures
,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer
,
London
, pp.
79
109
.
3.
Isaksson
,
M.
, and
Watson
,
M.
,
2013
, “
Workspace Analysis of a Novel Six-Degrees-of-Freedom Parallel Manipulator With Coaxial Actuated Arms
,”
ASME J. Mech. Des.
,
135
(
10
), p.
104501
.
4.
Marlow
,
K.
,
Isaksson
,
M.
,
Abdi
,
H.
, and
Nahavandi
,
S.
,
2014
, “
Workspace Analysis of Two Similar 3-DOF Axis-Symmetric Parallel Manipulators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2004
), Chicago, IL, Sept. 14–18, pp.
1690
1696
.
5.
Gosselin
,
C.
,
Isaksson
,
M.
,
Marlow
,
K.
, and
Laliberte
,
T.
,
2016
, “
Workspace and Sensitivity Analysis of a Novel Non-Redundant Parallel Scara Robot Featuring Infinite Tool Rotation
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
776
783
.
6.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nahon
,
M. A.
, and
Gosselin
,
C. M.
,
1999
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.
7.
Isaksson
,
M.
,
Eriksson
,
A.
, and
Nahavandi
,
S.
,
2014
, “
Analysis of the Inverse Kinematics Problem for 3-DOF Axis-Symmetric Parallel Manipulators With Parasitic Motion
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
5736
5743
.
8.
Clavel
,
R.
,
1990
, “
Device for the Movement and Positioning of an Element in Space
,” U.S. Patent No. 4,976,582.
9.
Wenger
,
P.
, and
Chablat
,
D.
,
2000
, “
Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide
,”
Advances in Robot Kinematics
,
Springer
, Dordrecht,
The Netherlands
, pp.
305
314
.
10.
Kock
,
S.
,
Oesterlein
,
R.
, and
Brogårdh
,
T.
,
2003
, “
Industrial Robot
,” WO Patent No. 03/066289 A1.
11.
Choi
,
H.
,
Konno
,
A.
, and
Uchiyama
,
M.
,
2003
, “
Singularity Analysis of a Novel 4-DOFs Parallel Robot H4 by Using Screw Theory
,”
ASME
Paper No. DETC2003/DAC-48822.
12.
Marlow
,
K.
,
Isaksson
,
M.
,
Dai
,
J. S.
, and
Nahavandi
,
S.
,
2015
, “
Motion/Force Transmission Analysis of Parallel Mechanisms With Closed-Loop Sub-Chains
,”
ASME J. Mech. Des.
(submitted).
13.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
, “
Special Configuration of Mechanisms
,”
Theory of Parallel Mechanisms
(Mechanisms and Machine Science),
Springer
, Dordrecht,
The Netherlands
, pp.
217
287
.
14.
Isaksson
,
M.
,
2011
, “
A Family of Planar Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
2737
2744
.
15.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
16.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford, UK
.
17.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.
18.
Tsai
,
L.
,
1998
, “
The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws
,”
Advances in Robot Kinematics: Analysis and Control
,
Springer
, Dordrecht,
The Netherlands
, pp.
327
336
.
19.
Joshi
,
S. A.
, and
Tsai
,
L.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME
Paper No. DETC2002/MECH-3423.
20.
Leal
,
E. R.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
ASME
Paper No. DETC2007-35516.
21.
Zhao
,
J.
,
Li
,
B.
,
Yang
,
X.
, and
Yu
,
H.
,
2009
, “
Geometrical Method to Determine the Reciprocal Screws and Applications to Parallel Manipulators
,”
Robotica
,
27
(
6
), pp.
929
940
.
22.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Null–Space Construction Using Cofactors From a Screw–Algebra Context
,”
Proc. R. Soc. London, Ser. A
,
458
(
2024
), pp.
1845
1866
.
23.
Plücker
,
J.
,
1868
,
Neue Geometrie des Raumes: gegründet auf die Betrachtung der geraden Linie als Raumelement
, Vol.
1
,
Teubner
,
Leipzig, Germany
.
24.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
25.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
26.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
The Transmissivity and Manipulability of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
137
143
.
27.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
28.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
29.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
30.
Liu
,
X.-J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
.
31.
Liu
,
H.
,
Wang
,
M.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2015
, “
A Dual Space Approach for Force/Motion Transmissibility Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034504
.
32.
Xie
,
F.
,
Liu
,
X.
, and
Li
,
J.
,
2014
, “
Performance Indices for Parallel Robots Considering Motion/Force Transmissibility
,”
Intelligent Robotics and Applications
(Lecture Notes in Computer Science),
Springer International Publishing
, Cham, Switzerland, pp.
35
43
.
33.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
34.
Amine
,
S.
,
Kanaan
,
D.
,
Caro
,
S.
, and
Wenger
,
P.
,
2010
, “
Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators With Parallelogram Joints
,”
ASME
Paper No. DETC2010-28483.
35.
Fang
,
H.
,
Fang
,
Y.
, and
Zhang
,
K.
,
2012
, “
Reciprocal Screw Theory Based Singularity Analysis of a Novel 3-DOF Parallel Manipulator
,”
Chin. J. Mech. Eng.
,
25
(
4
), pp.
647
653
.
36.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.
37.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Transmission Angle in Mechanisms (Triangle in Mech)
,”
Mech. Mach. Theory
,
37
(
2
), pp.
175
195
.
38.
Alt
,
V. H.
,
1932
, “
Der uberstragungswinkel und seine bedeutung fur dar konstruieren periodischer getriebe
,”
Werksstattstechnik
,
26
(
4
), pp.
61
65
.
39.
Hall
,
A. S.
,
1961
,
Kinematics and Linkage Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
,
2002
, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J., Ser. C
,
45
(
3
), pp.
730
740
.
41.
Phakatkar
,
H. G.
,
2006
,
Theory of Machines and Mechanisms I.
,
4th ed.
,
Nirali Prakashan
, Pune, India.
42.
Chen
,
X.
,
Chen
,
C.
, and
Liu
,
X.
,
2015
, “
Evaluation of Force/Torque Transmission Quality for Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041013
.
You do not currently have access to this content.