Precision-point synthesis problems for design of four-bar linkages have typically been formulated using two approaches. The exclusive use of path-points is known as “path synthesis,” whereas the use of poses, i.e., path-points with orientation, is called “rigid-body guidance” or the “Burmester problem.” We consider the family of “Alt–Burmester” synthesis problems, in which some combination of path-points and poses is specified, with the extreme cases corresponding to the classical problems. The Alt–Burmester problems that have, in general, a finite number of solutions include Burmester's original five-pose problem and also Alt's problem for nine path-points. The elimination of one path-point increases the dimension of the solution set by one, while the elimination of a pose increases it by two. Using techniques from numerical algebraic geometry, we tabulate the dimension and degree of all problems in this Alt–Burmester family, and provide more details concerning all the zero- and one-dimensional cases.

References

References
1.
Erdman
,
A.
,
Sandor
,
G.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
,
4th ed.
, Vol.
1
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
2nd ed.
,
Springer-Verlag
,
New York
.
3.
Sandor
,
G.
, and
Erdman
,
A.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.
5.
Tong
,
Y.
,
Myszka
,
D. H.
, and
Murray
,
A. P.
,
2013
, “
Four-Bar Linkage Synthesis for a Combination of Motion and Path-Point Generation
,”
ASME
Paper No. DETC2013-12969.
6.
Alt
,
H.
,
1923
, “
Über die Erzeugung gegebener ebener Kurven mit Hilfe des Gelenkvierecks
,”
Z. Angew. Math. Mech.
,
3
(
1
), pp.
13
19
.
7.
Burmester
,
L.
,
1886
,
Lehrbuch der Kinematic
,
Verlag Von Arthur Felix
,
Leipzig, Germany
.
8.
Bottema
,
O.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover Publications
,
Mineola, NY
.
9.
Freudenstein
,
F.
, and
Sandor
,
G.
,
1959
, “
Synthesis of Path Generating Mechanisms by Means of a Programmed Digital Computer
,”
ASME J. Eng. Ind.
,
81
(
1
), pp.
159
168
.
10.
Suh
,
C.
, and
Radcliffe
,
C.
,
1967
, “
Synthesis of Plane Linkages With Use of the Displacement Matrix
,”
ASME J. Eng. Ind.
,
89
(
2
), pp.
206
214
.
11.
Morgan
,
A.
, and
Wampler
,
C.
,
1990
, “
Solving a Planar Fourbar Design Problem Using Continuation
,”
ASME J. Mech. Des.
,
112
(
4
), pp.
544
550
.
12.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Means
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
298
306
.
13.
Tsai
,
L.-W.
, and
Lu
,
J.-J.
,
1989
, “
Coupler-Point-Synthesis Using Homotopy Methods
,”
Advances in Design Automation—1989: Mechanical Systems Analysis, Design and Simulation
, Vol.
19-3
,
B.
Ravani
, ed.,
ASME
, Quebec, Canada, pp.
417
424
.
14.
Wampler
,
C. W.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Fourbar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
161
.
15.
Tsai
,
L. W.
, and
Morgan
,
A. P.
,
1985
, “
Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods
,”
ASME J. Mech., Transm., Autom.
,
107
(
2
), pp.
189
200
.
16.
Raghavan
,
M.
,
1993
, “
The Stewart Platform of General Geometry Has 40 Configurations
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
277
282
.
17.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
,
2004
, “
Advances in Polynomial Continuation for Solving Problems in Kinematics
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
262
268
.
18.
Wampler
,
C. W.
, and
Sommese
,
A. J.
,
2011
, “
Numerical Algebraic Geometry and Algebraic Kinematics
,”
Acta Numer.
,
20
, pp.
469
567
.
19.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific Press
,
Singapore
.
20.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
, Numerically Solving Polynomial Systems With Bertini (Software, Environments, and Tools), Vol.
25
,
SIAM
,
Philadelphia, PA
.
21.
Lu
,
Y.
,
Bates
,
D. J.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2007
, “
Finding All Real Points of a Complex Curve
,”
Contemp. Math.
,
448
(
8
), pp.
183
205
.
22.
Brake
,
D. A.
,
Bates
,
D. J.
,
Hao
,
W.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2014
, “
Bertini_real: Software for One- and Two-Dimensional Real Algebraic Sets
,”
Mathematical Software—ICMS 2014
,
Springer
, Seoul, South Korea, pp.
175
182
.
23.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1989
, “
Coefficient-Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
29
(
2
), pp.
123
160
.
24.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Errata: Coefficient-Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
51
(2–3), pp.
207
.
25.
Hauenstein
,
J. D.
, and
Sommese
,
A. J.
,
2010
, “
Witness Sets of Projections
,”
Appl. Math. Comput.
,
217
(
7
), pp.
3349
3354
.
You do not currently have access to this content.