This paper presents the design of an underactuated robotic arm for capturing moving targets with an impact-absorbing capability. The arm consists of three joints (a base joint (BJ), a medial joint (MJ), and a distal joint (DJ)) that are driven by two actuators. A one-input dual-output planetary gear (PG) system, in which neither the ring gear nor the planetary carrier is fixed, is employed to distribute the driving torque between the MJ and DJ. As is well known, an underactuated arm may exhibit unstable grasping performance such that the arm loses contact with the target in certain grasping postures. Therefore, a method is presented for analyzing the equilibrium contact force and the relative movement trend between the target and the arm to determine the work space in which stable grasping is possible. The structural configuration parameters, such as the length ratios among the three beams and the reduction ratio of the PG system, were optimized to maximize the grasp stability work space. Subsequently, a prototype was designed and fabricated based on these optimized parameters. Experiments indicate that this arm design can effectively reduce the peak torque on the joints when grasping a moving target.

References

References
1.
Nishida
,
S. I.
, and
Kawamoto
,
S.
,
2011
, “
Strategy for Capturing of a Tumbling Space Debris
,”
Acta Astronaut.
,
68
(
1–2
), pp.
113
120
.
2.
Johnson
,
L.
,
Khazanov
,
G.
, and
Gilchrist
,
B.
,
2012
, “
Space Tethers
,”
J. Space Technol. Sci.
,
26
(
1
), pp.
2
13
.
3.
Murphy
,
R. J.
,
Kutzer
,
M. D. M.
,
Segreti
,
S. M.
,
Lucas
,
B. C.
, and
Armand
,
M.
,
2013
, “
Design and Kinematic Characterization of a Surgical Manipulator With a Focus on Treating Osteolysis
,”
Robotica
,
32
(6), pp.
835
850
.
4.
Wolf
,
S.
,
Eiberger
,
O.
, and
Hirzinger
,
G.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Shanghai, China
, May 9–13, pp.
5082
5089
.
5.
Jacobsen
,
S. C.
,
Wood
,
J. E.
,
Knutti
,
D. F.
, and
Biggers
,
K. B.
,
1984
, “
The UTAH/M.I.T. Dextrous Hand: Work in Progress
,”
Int. J. Rob. Res.
,
4
(
3
), pp.
21
50
.
6.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
The Development of Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
(
3
), pp.
351
358
.
7.
Gazeau
,
J. P.
,
Zeghloul
,
S.
, and
Ramirez
,
G.
,
2005
, “
Manipulation With a Polyarticulated Mechanical Hand: A New Efficient Real-Time Method for Computing Fingertip Forces for a Global Manipulation Strategy
,”
Robotica
,
23
(
4
), pp.
479
490
.
8.
Grebenstein
,
M.
,
Chalon
,
M.
,
Friedl
,
W.
, and
Siegwart
,
R.
,
2012
, “
The Hand of the DLR Hand Arm System: Designed for Interaction
,”
Int. J. Rob. Res.
,
13
(
31
), pp.
1531
1555
.
9.
Gafford
,
J.
,
Ding
,
Y.
,
Harris
,
A.
,
McKenna
,
T.
,
Polygerinos
,
P.
,
Holland
,
D.
,
Moser
,
A.
, and
Walsh
,
C. J.
,
2015
, “
Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper
,”
ASME J. Mech. Rob.
,
7
(
2
), p. 021006.
10.
Ozawa
,
R.
,
Hashirii
,
K.
, and
Yoshimura
,
Y.
,
2014
, “
Design and Control of a Three-Fingered Tendon-Driven Robotic Hand With Active and Passive Tendons
,”
Auton. Rob.
,
36
, pp.
67
78
.
11.
Takaki
,
T.
, and
Omata
,
T.
,
2011
, “
High-Performance Anthropomorphic Robot Hand With Grasping-Force-Magnification Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
16
(
3
), pp.
583
591
.
12.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
.
13.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2011
, “
Joint Coupling Design of Underactuated Hands for Unstructured Environments
,”
Int. J. Rob. Res.
,
30
(
9
), pp.
1157
1169
.
14.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2013
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
15.
Lalibertè
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Rob. Control
,
4
(
3
), pp.
77
87
.
16.
Huang
,
H.
,
Jiang
,
L.
,
Pang
,
Y.
,
Tang
,
Q.
,
Yang
,
D.
, and
Liu
,
H.
,
2010
, “
Observer-Based Dynamic Control of an Underactuated Hand
,”
Adv. Rob.
,
24
(
1–2
), pp.
123
137
.
17.
Zhang
,
C.
,
Zhang
,
W.
,
Sun
,
Z.
, and
Chen
,
Q.
,
2012
, “
HAG-SR Hand: Highly-Anthropomorphic-Grasping Under-Actuated Hand With Naturally Coupled States
,”
Soc. Rob.
,
7621
, pp.
475
484
.
18.
Koganezawa
,
K.
, and
Ishizuka
,
Y.
,
2008
, “
Novel Mechanism of Artificial Finger Using Double Planetary Gear System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
),
Nice, France
, Sept. 22–26, pp.
3184
3191
.
19.
Nishimura
,
H.
,
Kakogawa
,
A.
, and
Ma
,
S.
,
2012
, “
Development of an Underactuated Robot Gripper Capable of Retracting Motion
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
),
Guangzhou, China
, Dec. 11–14, pp.
2161
2166
.
20.
Quan
,
Q.
,
Ma
,
S.
, and
Deng
,
Z.
,
2012
, “
Impact Analysis of a Dual-Crawler-Driven Robot
,”
Adv. Rob.
,
23
(
12–13
), pp.
1779
1797
.
21.
Higashimori
,
M.
,
Kaneko
,
M.
,
Namiki
,
A.
, and
Ishikawa
,
M.
,
2005
, “
Design of the 100 g Capturing Robot Based on Dynamic Preshaping
,”
Int. J. Rob. Res.
,
24
(
9
), pp.
743
753
.
22.
Grebenstein
,
M.
, and
van der Smagt
,
P.
,
2008
, “
Antagonism for a Highly Anthropomorphic Hand-Arm System
,”
Adv. Rob.
,
22
(
9
), pp.
39
55
.
23.
Wang
,
Q.
,
Liu
,
G.
,
Quan
,
Q.
, and
Deng
,
Z.
,
2015
, “
A Novel Underactuated Robotic Finger for Withstanding Impacts of Non-Cooperative Object Capture
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Seattle
, WA, May 26–30, pp.
4341
4346
.
24.
Carrozza
,
M. C.
,
Massa
,
B.
, and
Micera
,
S.
,
2002
, “
The Development of a Novel Prosthetic Hand-Ongoing Research and Preliminary Results
,”
IEEE/ASME Trans. Mechatron.
,
7
(
2
), pp.
108
114
.
25.
Ambrose
,
R. O.
,
Aldridge
,
H.
, and
Askew
,
R. S.
,
2000
, “
Robonaut: NASA's Space Humanoid
,”
Intell. Syst.
,
14
(
4
), pp.
57
63
.
26.
Gaiser
,
I.
,
Schulz
,
S.
, and
Kargov
,
A.
,
2008
, “
A New Anthropomorphic Robotic Hand
,”
8th IEEE-RAS International Conference on Humanoid Robots
(
Humanoids 2008
),
Daejeon, South Korea
, Dec. 1–3, pp.
418
422
.
27.
Yamano
,
I.
, and
Maeno
,
T.
,
2005
, “
Five-Fingered Robot Hand Using Ultrasonic Motors and Elastic Elements
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2005
),
Barcelona, Spain
, Apr. 18–22, pp.
2673
2678
.
28.
Minor
,
M.
, and
Mukherjee
,
R.
,
1999
, “
A Mechanism for Dexterous End-Effector Placement During Minimally Invasive Surgery
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
472
479
.
29.
Kragten
,
G. A.
, and
Herder
,
J. L.
,
2010
, “
The Ability of Underactuated Hands to Grasp and Hold Objects
,”
Mech. Mach. Theory
,
45
(
3
), pp.
408
425
.
30.
Pollard
,
N. S.
, and
Gilbert
,
R. C.
,
2002
, “
Tendon Arrangement and Muscle Force Requirements for Human-Like Force Capabilities in a Robotic Finger
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
),
Washington, DC
, May 11–15, pp.
3755
3762
.
31.
Joshua
,
M. I.
, and
Francisco
,
J. V.
,
2013
, “
Computational Optimization and Experimental Evaluation of Grasp Quality for Tendon-Driven Hands Subject to Design Constraints
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021009
.
32.
Inouye
,
J. M.
,
Kutch
,
J. J.
, and
Valero-Cuevas
,
F. J.
,
2014
,
Optimizing the Topology of Tendon-Driven Fingers: Rationale, Predictions and Implementation
, Vol.
95
,
Springer
, Cham,
Switzerland
, pp.
247
266
.
33.
Birglen
,
L.
,
Lalibertè
,
T.
, and
Gosselin
,
C.
,
2008
,
Underactuated Robotic Hands
,
Springer Science and Business Media
,
Berlin
.
34.
Quan
,
Q.
,
Wang
,
Q.
,
Deng
,
Z.
,
Jiang
,
S.
,
Hou
,
X.
, and
Tang
,
D.
,
2013
, “
A Planetary Gear Based Underactuated Self-Adaptive Robotic Finger
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
),
Shenzhen, China
, Dec. 12–14, pp.
1586
1591
.
You do not currently have access to this content.