Extended nonlinear analytical modeling and analysis of compound parallelogram mechanisms are conducted in this paper to consider the effect of the initial internal axial force. The nonlinear analytical model of a compound basic parallelogram mechanism (CBPM) is first derived incorporating the initial internal axial force. The stiffness equations of compound multibeam parallelogram mechanisms (CMPMs) are then followed. The analytical maximal stress under the primary actuation force only is also derived to determine the maximal primary motion (motion range). The influence of initial internal axial forces on the primary motion/stiffness is further quantitatively analyzed by considering different slenderness ratios, which can be employed to consider active displacement preloading control and/or thermal effects. The criterion that the primary stiffness may be considered “constant” is defined and the initial internal axial force driven by a temperature change is also formulated. A physical preloading system to control the initial internal axial force is presented and testing results of the object CBPM are compared with theoretical ones.

References

References
1.
Li
,
Y.
,
Xiao
,
S.
,
Xi
,
L.
, and
Wu
,
Z.
,
2014
, “
Design, Modeling, Control and Experiment for a 2-DOF Compliant Micro-Motion Stage
,”
Int. J. Precis. Eng. Manuf.
,
15
(
4
), pp.
735
744
.
2.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R.
, and
Culpepper
,
M. L.
,
2010
, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
.
3.
Sun
,
X.
,
Chen
,
W.
,
Zhou
,
R.
,
Chen
,
W.
, and
Zhang
,
J.
,
2014
, “
A Decoupled 2-DOF Flexure-Based Micropositioning Stage With Large Travel Ranges
,”
Robotica
,
32
(
5
), pp.
677
694
.
4.
Yong
,
Y. K.
,
Moheimani
,
S. O. R.
,
Kenton
,
B. J.
, and
Leang
,
K. K.
,
2012
, “
Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
121101
.
5.
Hao
,
G.
,
Li
,
H.
,
He
,
X.
, and
Kong
,
X.
,
2014
, “
Conceptual Design of Compliant Translational Joints for High-Precision Applications
,”
Front. Mech. Eng.
,
9
(
4
), pp.
331
343
.
6.
Panas
,
R. M.
, and
Hopkins
,
J. B.
,
2015
, “
Eliminating Underconstraint in Double Parallelogram Flexure Mechanisms
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092301
.
7.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multi-Beam Parallelogram Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041016
.
8.
Zhang
,
B.
,
Billings
,
S. A.
,
Lang
,
Z.-Q.
, and
Tomlinson
,
G. R.
,
2009
, “
Suppressing Resonant Vibrations Using Nonlinear Springs and Dampers
,”
J. Vib. Control
,
15
(
11
), pp.
1731
1744
.
9.
Migliore
,
S.
,
Brown
,
E.
, and
DeWeerth
,
S.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4508
4513
.
10.
Zhang
,
W.-M.
,
Yan
,
H.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-In Instability in MEMS/NEMS: A Review
,”
Sens. Actuators, A
,
214
, pp.
187
218
.
11.
Wu
,
Y.-S.
, and
Lan
,
C.-C.
,
2014
, “
Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122302
.
12.
Tolou
,
N.
,
Henneken
,
V.
, and
Herder
,
J.
,
2010
, “
Statically Balanced Compliant Micro Mechanisms (SB-MEMS): Concepts and Simulation
,”
ASME
Paper No. DETC2010-28406.
13.
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2015
, “
Non-Dimensional Approach for Static Balancing of Rotational Flexures
,”
Mech. Mach. Theory
,
84
, pp.
90
98
.
14.
Henein
,
S.
,
2001
,
Conception des guidages flexibles
,
Presses Polytechniques et Universitaires Romandes
,
Lausanne, Switzerland
.
15.
Hiemstra
,
D. B.
,
Parmar
,
G.
, and
Awtar
,
S.
,
2014
, “
Performance Tradeoffs Posed by Moving Magnet Actuators in Flexure-Based Nanopositioning
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
201
212
.
16.
Zhang
,
Q.
, and
Zhang
,
X.
,
2015
, “
Dynamic Analysis of Planar 3-RRR Flexible Parallel Robots Under Uniform Temperature Change
,”
J. Vib. Control
,
21
(
1
), pp.
81
104
.
17.
Awtar
,
S.
,
2004
, “
Analysis and Synthesis of Planer Kinematic XY Mechanisms
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
19.
Bakshi
,
U. A.
, and
Bakshi
,
M. V.
,
2009
,
Modern Control Theory
,
Technical Publications
,
Pune, India
.
20.
Taylor
,
R. E.
,
1998
, Thermal Expansion of Solids (Cindas Data Series on Material Properties),
C. H.
Ho
, ed.,
ASM International
,
Cleveland, OH
.
21.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
2012
,
Theory of Thermal Stresses
,
Courier
,
New York
.
You do not currently have access to this content.