A complete stiffness analysis of a parallel manipulator considers the structural compliance of all elements, both in designed degrees-of-freedom (DoFs) and constrained DoFs, and also includes the effect of preloading. This paper presents the experimental validation of a Jacobian-based stiffness analysis method for parallel manipulators with nonredundant legs, which considers all those aspects, and which can be applied to limited-DoF parallel manipulators. The experimental validation was performed by comparing differential wrench measurements with predictions based on stiffness analyses with increasing levels of detail. For this purpose, two passive parallel mechanisms were designed, namely, a planar 3DoF mechanism and a spatial 1DoF mechanism. For these mechanisms, it was shown that a stiffness analysis becomes more accurate if preloading and structural compliance are considered.

References

References
1.
Majou
,
F.
,
Gosselin
,
C.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2007
, “
Parametric Stiffness Analysis of the Orthoglide
,”
Mech. Mach. Theory
,
42
(
3
), pp.
296
311
.
2.
Pinto
,
C.
,
Corral
,
J.
,
Altuzarra
,
O.
, and
Hernández
,
A.
,
2010
, “
A Methodology for Static Stiffness Mapping in Lower Mobility Parallel Manipulators With Decoupled Motions
,”
Robotica
,
28
(
5
), pp.
719
735
.
3.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
4.
Quennouelle
,
C.
, and
Gosselin
,
C.
,
2011
, “
Kinematostatic Modeling of Compliant Parallel Mechanisms
,”
Meccanica
,
46
(
1
), pp.
155
169
.
5.
Chen
,
S.-F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Rob. Res.
,
19
(
9
), pp.
835
847
.
6.
Merlet
,
J.-P.
, and
Gosselin
,
C.
,
2008
, “
Parallel Mechanisms and Robots
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
269
285
.
7.
Quennouelle
,
C.
, and
Gosselin
,
C.
,
2009
, “
A Quasi-Static Model for Planar Compliant Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021012
.
8.
Ahmad
,
A.
,
Andersson
,
K.
,
Sellgren
,
U.
, and
Khan
,
S.
,
2012
, “
A Stiffness Modeling Methodology for Simulation-Driven Design of Haptic Devices
,”
Eng. Comput.
,
30
(
1
), pp.
125
141
.
9.
Cheng
,
G.
,
Xu
,
P.
,
Yang
,
D.
, and
Liu
,
H.
,
2013
, “
Stiffness Analysis of a 3CPS Parallel Manipulator for Mirror Active Adjusting Platform in Segmented Telescope
,”
Rob. Comput. Integr. Manuf.
,
29
(
5
), pp.
302
311
.
10.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
11.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.
12.
Huang
,
T.
,
Zhao
,
X.
, and
Whitehouse
,
D. J.
,
2002
, “
Stiffness Estimation of a Tripod-Based Parallel Kinematic Machine
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
50
58
.
13.
Wahle
,
M.
, and
Corves
,
B.
,
2011
, “
Stiffness Analysis of Clavel's DELTA Robot
,”
Intelligent Robotics and Applications
(Lecture Notes in Computer Science), Vol.
7101
,
S.
Jeschke
,
H.
Liu
, and
D.
Schilberg
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
240
249
.
14.
Pham
,
H.-H.
, and
Chen
,
I.-M.
,
2005
, “
Stiffness Modeling of Flexure Parallel Mechanism
,”
Precis. Eng.
,
29
(
4
), pp.
467
478
.
15.
Zhang
,
D.
, and
Lang
,
S. Y.
,
2004
, “
Stiffness Modeling for a Class of Reconfigurable PKMs With Three to Five Degrees of Freedom
,”
J. Manuf. Syst.
,
23
(
4
), pp.
316
327
.
16.
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2009
, “
Stiffness Modeling of the Tricept Robot Using the Overall Jacobian Matrix
,”
J. Mech. Rob.
,
1
(
2
), p.
021002
.
17.
Li
,
Y.
, and
Xu
,
Q.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
18.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.
19.
Sung Kim
,
H.
, and
Lipkin
,
H.
,
2014
, “
Stiffness of Parallel Manipulators With Serially Connected Legs
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031001
.
20.
Hoevenaars
,
A. G. L.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2015
, “
Jacobian-Based Stiffness Analysis Method for Parallel Manipulators With Non-Redundant Legs
,”
Proc. Inst. Mech. Eng., Part C
(in press).
21.
Yi
,
B.-J.
,
Chung
,
G. B.
,
Na
,
H. Y.
,
Kim
,
W. K.
, and
Suh
,
I. H.
,
2003
, “
Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
604
612
.
22.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
554
564
.
23.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
24.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
25.
Kövecses
,
J.
, and
Angeles
,
J.
,
2007
, “
The Stiffness Matrix in Elastically Articulated Rigid-Body Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
169
184
.
26.
Hoevenaars
,
A. G. L.
,
2015
, Wrench Measurements on a Planar, Passive, 3-DoF, 3-RPR Parallel Mechanism and a Spatial, Passive, 1-DoF, 3-RRR Parallel Mechanism,
Dataset
, TU Delft.
27.
Griffis
,
M.
, and
Duffy
,
J.
,
1993
, “
Global Stiffness Modeling of a Class of Simple Compliant Couplings
,”
Mech. Mach. Theory
,
28
(
2
), pp.
207
224
.
You do not currently have access to this content.